The development of convenience foods by incorporating nutrient-rich pulses such as peas and lentils will tremendously alter the future of pulse and cereal industries. However, these pulses should be size-reduced before being incorporated into many food products. Therefore, an attempt was made to adapt roller mill settings to produce de-husked yellow pea and red lentil flours. The milling flowsheets unique to yellow peas and red lentils were developed in producing small, medium, and large flours with maximum yield and flour quality. This study also investigated the differences in chemical composition, physical characteristics, and particle size distributions of the resultant six flour fractions. The kernel dimensions and physicochemical properties of the whole yellow pea and red lentils were also studied to develop customized mill settings. Overall, the mill settings had a significant effect on the physical properties of different particle-sized flours. The geometric mean diameters of different particle-sized red lentil flours were 56.05 μm (small), 67.01 μm (medium), and 97.17 μm (large), while for yellow pea flours they were 41.38 μm (small), 60.81 μm (medium), and 98.31 μm (large). The particle size distribution of all the flour types showed a bimodal distribution, except for the small-sized yellow pea flour. For both the pulse types, slightly more than 50% flour was approximately sizing 50 μm, 75 μm, and 100 μm for small, medium, and large settings, respectively. The chemical composition of the flour types remained practically the same for different-sized flours, fulfilling the objective of this current study. The damaged starch values for red lentil and yellow pea flour types increased with a decrease in flour particle size. Based on the Hausner’s ratios, the flowability of large-sized flour of red lentils could be described as passable; however, all the remaining five flour types were indicated as either poor or very poor. The findings of this study assist the millers to adapt yellow pea and red lentil milling technologies with minor modifications to the existing facilities. The study also helps in boosting the production of various baking products using pulse and wheat flour blends to enhance their nutritional quality.
Chickpeas and other high protein plants are becoming increasingly popular. Traditionally, attrition or hammer mills are used for milling chickpeas. However, the use of roller mills on chickpeas has not been extensively researched. This study compared pilot-scale milling trials involving whole Kabuli compared to split and de-hulled Desi chickpeas. A flow sheet was designed and optimized for meal production with minimal co-product flour produced. Milling yields, particle size, and proximate analysis data were recorded. The optimum flow sheet consisted of 4 break passages, 2 smooth roll passages, and 4 purifiers. Results showed whole Kabuli chickpeas had a higher meal yield, at 63.8%, than split Desi seeds, at 54.1%; with both percentages proportional to the weight of milled seed. The remaining 36.2% or 45.9% consisted of co-product flour, feed streams and process losses. Both meals had an average particle size between 600 and 850 microns and both flours had a bimodal particle size distribution with peaks at 53 and 90–150 microns. The use of purifiers facilitated better separation of hull and resulted in lower crude fiber levels in the Kabuli meal. Proximate analysis trends were similar for both chickpea meals with higher protein (~2% more), crude fiber (~1% more) and ash (0.1–0.3% more) in the meal compared to the co-product flour. The co-product flour had substantially higher total starch (~15% more) than the meal. The results of this research can be used to modify wheat mills to process chickpeas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.