Stearoyl-CoA desaturase 1 (SCD1) greatly contributes to the unsaturated fatty acids present in milk and meat of cattle. The SCD1 enzyme introduces a double bond into certain saturated fatty acyl-CoAs producing monounsaturated fatty acids (MUFA). The SCD1 enzyme also has been shown to be active in the bovine mammary gland converting t11 18:1 (vaccenic acid) to c9 t11 conjugated linoleic acid (CLA). The objective of this study was to determine any association between the gene expression of SCD1 and occurrence of its products (c9 14:1, c9 16:1, c9 18:1, and c9 t11 18:2) in various bovine tissues. Tissue samples were obtained from lactating Holstein cows (n=28) at slaughter, frozen in liquid nitrogen and stored at -80 °C. Total RNA was extracted and converted to complementary DNA for quantitative real time polymerase chain reaction (PCR) analysis of the SCD1 gene. Extracted lipid was converted to fatty acid methyl esters and analysed by GC. Tissues varied in expression of SCD1 gene with mammary, cardiac, intestinal adipose, and skeletal muscle expressing greater copy number as compared with lung, large intestine, small intestine and liver (371, 369, 328, 286, 257, 145, 73, and 21 copies/ng RNA, respectively). Tissues with high mRNA expression of SCD1 contained greater SCD1 protein whereas detection of SCD1 protein in tissues with low SCD1 mRNA expression was very faint or absent. Across tissues, the desaturase indices for c9 18:1 (r=0.24) and sum of SCD products (r=0.20) were positively correlated with SCD1 gene expression (P<0.01 for both). Within each tissue, the relationship between SCD1 gene expression and the desaturase indices varied. No correlation was detected between SCD1 expression and desaturase indices in the liver, large and small intestines, lung, cardiac or skeletal muscles. Positive correlations, however, were detected between SCD1 expression and the desaturase indices in intestinal adipose tissue (P<0.02 for all) except 14:1, whereas only c9 18:1, c9 t11 18:2 and sum of all desaturase indices were positively correlated with SCD1 expression in mammary tissue (P < or = 0.03). Overall, the relationship between SCD1 gene expression and occurrence of its products seems to be tissue specific.
Retinol-binding protein (RBP) is the main transport system for retinol in circulation, is a relatively small protein with one binding site for retinol in the all-trans form, and is bound to transthyretin. The objectives of this study were to characterize the temporal pattern of bovine hepatic mRNA expression of RBP during the periparturient period and to determine if a relationship exists between the expression of RBP and that of tumor necrosis factor (TNF)-α in dairy cows. In experiment 1, we assessed hepatic mRNA expression of RBP during the periparturient period. Liver tissues were sampled from periparturient dairy cows (n=9) at -21, -4, +1, +7, and +21 relative to parturition and frozen in liquid N(2). Total RNA was extracted from each tissue sample and cDNA was generated. Gene expressions of RBP and β-actin (as a housekeeping gene) were measured as relative quantity using reverse transcription-PCR. Data were analyzed using cycle threshold values, adjusted to β-actin, and significance was determined at P<0.05. Serum samples (-21, -4, +1, +7, and +21 relative to parturition) were analyzed for retinol concentration using a standard HPLC-based method. Cows had variable expression of hepatic RBP and serum retinol over the transition period, with a decline near parturition and a rebound toward prepartum levels later in lactation. In experiment 2, liver and visceral (intestinal) adipose tissues were sampled from dairy cows (n=28) at slaughter. Expression of RBP and TNF-α was detected in all samples and variations among cows were highly significant for both genes. Across tissues, expression of RBP was positively correlated with that of TNF-α (r=0.60). Within adipose tissue, expression of RBP and TNF-α was weakly correlated (r=0.23), whereas in hepatic tissue, expression was strongly correlated (r=0.62). In experiment 3, late-lactation dairy Holstein cows were blocked by parity and feed intake, and randomly assigned to control, recombinant bovine (rb)TNF challenge, or pair-fed control treatment (n=5/treatment). Cows were injected with either rbTNF (subcutaneous injection of 2 µg/kg of body weight in saline) or sterile saline (control and pair-fed control animals) once daily for 7d. Liver biopsy was performed on d 7 and samples were processed for expression of RBP and TNF-α. Although TNF challenge caused an upregulation of hepatic TNF-α expression, as expected, it did not alter hepatic RBP expression. Overall, the temporal pattern of hepatic RBP gene expression during the periparturient period followed, to a great extent, that of plasma retinol. Although a strong positive correlation was previously detected between bovine hepatic RBP and TNF-α transcripts, rbTNF challenge did not cause alter RBP expression. These observations collectively imply that regulation of RBP at the transcription level is influenced by physiological state but may be independent from that of transthyretin, which is altered by proinflammatory stimuli (such as TNF-α) via induction of transcription factor nuclear factor-interleukin 6.
Feeding rations supplemented with fats may provide an opportunity to manipulate the health and performance of dairy cows; however, the relative effects of specific fats, such as trans fatty acids (TFA), are poorly understood. The objective of this study was to investigate the effects of a ration supplemented with TFA on the fatty acid (FA) profile of peripheral blood mononuclear cells (PBMC), plasma lipids, and milk; the gene expression of inflammatory markers; production of acute phase proteins; and production performance in early lactating dairy cows. Trans fat was fed at 0, 1.5, and 3% of dry matter, replacing (1:1 wt:wt) saturated fatty acids (SFA). Multiparous lactating Holstein cows at 7 d in milk (n = 12) were randomly assigned to a treatment sequence in a 3 × 3 balanced Latin square design; each period lasted 14 d. Milk and heparinized blood were collected on d 0 (pretreatment) and on d 10 and 14 of each period. Plasma was collected and solid-phase extraction was used to isolate plasma phospholipids and nonesterified fatty acids. Additionally, PBMC were isolated for FA analysis and gene expression analysis by reverse transcription-PCR using bovine RPS9 as the endogenous control. The FA composition of PBMC, plasma lipid fractions, and milk were analyzed by gas chromatography. Data were analyzed using the MIXED procedure (SAS Institute Inc., Cary, NC). As dietary TFA increased, the percentage of some 18:1 trans isomers increased in PBMC, plasma lipids, and milk. Dietary TFA had no detectable effect on mRNA expression of proinflammatory TNFα or IL6. Expression of IL1β and ICAM1 decreased with increasing TFA. In addition, supplementation of TFA did not affect percentages of milk fat, protein, lactose, or solids-not-fat, or somatic cell count. Overall, dietary TFA increased the trans FA present in PBMC, plasma lipids, and milk; however, dietary TFA decreased PBMC expression of some of the proinflammatory markers tested at the mRNA level compared with SFA in early lactating dairy cows. Together, these findings provide evidence that over short period of times, dietary TFA might be slightly less immune-stimulatory than dietary SFA.
Abstract. Our objective was to study the effect of differing dietary crude protein and vitamin A on retinoid metabolism in a periparturient rat model. Sixty female rats, approximately 21 d before parturition, were fed rations containing either low protein (13%; LP) or high protein (22%; HP) crude protein and either low vitamin A (3 IU/g; LA) or high vitamin A (5 IU/g; HA), yielding treatments HPHA, HPLA, LPHA, and LPLA. Samples were collected at d −14, d +3, and +10 relative to parturition and analyzed for all-trans retinoid acid (RA), 13-Cis RA, and retinol. At d −14, serum all-trans RA concentrations decreased compared to baseline. At both d +3 and d +10, serum retinol increased and liver 13-Cis RA decreased. In the small intestine, 13-cis RA was higher in HPHA than HPLA pre-partum (0.93±0.12 vs. 0.40±0.12 ng/ml, P=0.04). Post-partum, 13-cis RA was lower in high vitamin HPHA and LPHA groups (0.35±0.06 and 0.38±0.06 ng/ml) than in low vitamin A HPLA and LPLA treatments (0.50±0.06 and 1.32±0.06 ng/ml, P<0.01). In rats fed LA diets, TNF-alpha expression tended to be lower in HPLA than LPLA groups on day +3 (0.69±0.34 vs 1.00±0.52, P=0.08), but not day +10 (0.56±0.25 vs. 1.00±0.49 Fold Change, P>0.10). Retinoids accumulated during pregnancy and were mobilized during lactation. The sequestration of retinoids was increased when dietary protein content was low. Further studies are needed to investigate how retinoid metabolism could be manipulated to improve vitamin A delivery to milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.