Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD 70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p,-100-5p, and-150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p,-96-5p, and-802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.
A radiological/nuclear (RAD-NUC) incident, especially in an urban setting, results in diverse radiation-induced injuries due to heterogeneities in dose, the extent of partial-body shielding, human biodiversity and pre-existing health conditions. For example, acute radiation syndrome (ARS) can result in death within days to weeks of exposure to 0.7–10 Gy doses and is associated with destruction of the bone marrow, known as hematopoietic ARS (H-ARS). However, partial-body shielding that spares a portion of the bone marrow from exposure can significantly reduce the occurrence of H-ARS, but delayed effects of acute radiation exposure (DEARE) can still occur within months or years after exposure depending on the individual. In a mass casualty event, ideal triage must be able to pre-symptomatically identify individuals likely to develop radiation-induced injuries and provide an appropriate treatment plan. Today, while there are FDA approved treatments for hematopoietic ARS, there are no approved diagnosis for radiation injury and no approved treatments for the broad spectra of injuries associated with radiation. This has resulted in a major capability gap in the nations preparedness to a potentially catastrophic RAD-NUC event. Circulating microRNA (miRNA) are a promising class of biomarkers for this application because the molecules are accessible via a routine blood draw and are excreted by various tissues throughout the body. To test if miRNA can be used to predict distinct tissue-specific radiation-induced injuries, we compared the changes to the circulating miRNA profiles after total-body irradiation (TBI) and whole thorax lung irradiation (WTLI) in non-human primates at doses designed to induce ARS (day 2 postirradiation; 2–6.5 Gy) and DEARE (day 15 postirradiation; 9.8 or 10.7 Gy), respectively. In both models, miRNA sequences were identified that correlated with the onset of severe neutropenia (counts <500 μL–1; TBI) or survival (WTLI). This method identified panels of eleven miRNA for both model and assigned functional roles for the panel members using gene ontology enrichment analysis. A common signature of radiation-induced injury was observed in both models: apoptosis, DNA damage repair, p53 signaling, pro-inflammatory response, and growth factor/cytokine signaling pathways were predicted to be disrupted. In addition, injury-specific pathways were identified. In TBI, pathways associated with ubiquitination, specifically of histone H2A, were enriched, suggesting more impact to DNA damage repair mechanisms and apoptosis. In WTLI, pro-fibrotic pathways including transforming growth factor (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were enriched, consistent with the onset of late lung injury. These results suggest that miRNA may indeed be able to predict the onset of distinct types of radiation-induced injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.