A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain's trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics.
Predicting how the brain can be driven to specific states by means of internal or external control requires a fundamental understanding of the relationship between neural connectivity and activity. Network control theory is a powerful tool from the physical and engineering sciences that can provide insights regarding that relationship; it formalizes the study of how the dynamics of a complex system can arise from its underlying structure of interconnected units. Given the recent use of network control theory in neuroscience, it is now timely to offer a practical guide to methodological considerations in the controllability of structural brain networks. Here we provide a systematic overview of the framework, examine the impact of modeling choices on frequently studied control metrics, and suggest potentially useful theoretical extensions. We ground our discussions, numerical demonstrations, and theoretical advances in a dataset of high-resolution diffusion imaging with 730 diffusion directions acquired over approximately 1 hour of scanning from ten healthy young adults. Following a didactic introduction of the theory, we probe how a selection of modeling choices affects four common statistics: average controllability, modal controllability, minimum control energy, and optimal control energy. Next, we extend the current state of the art in two ways: first, by developing an alternative measure of structural connectivity that accounts for radial propagation of activity through abutting tissue, and second, by defining a complementary metric quantifying the complexity of the energy landscape of a system. We close with specific modeling recommendations and a discussion of methodological constraints. Our hope is that this accessible account will inspire the neuroimaging community to more fully exploit the potential of network control theory in tackling pressing questions in cognitive, developmental, and clinical neuroscience.Recent advances in network control theory offer a formal means to study how the temporal dynamics of a complex system emerges from its underlying network structure [9][10][11]. Applying this theory to the brain requires that one first builds a network model in which brain regions (nodes) are anatomically connected to one another (edges) [12,13]. The state of the brain network system is then reflected in the pattern of neurophysiological activity across network nodes, and state trajectories represent the temporal sequence of brain states that the system traverses [14,15]. With definitions of the network and its state in hand, we can consider the problem of network controllability, which in essence amounts to asking how the system can be driven to specific target states by means of internal or external control input [16]. In the context of the brain, such input can intuitively take the form of electrical stimulation [17-21], task modulation [22][23][24], or other perturbations from the world or from different portions of the body [25,26]. Practically, network control theory and its associated toolkit e...
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain’s control performance by removing single edges in the network. Generally, our results ground the expectation of a control system’s behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Executive function develops during adolescence, yet it remains unknown how structural brain networks mature to facilitate activation of the fronto-parietal system, which is critical for executive function. In a sample of 946 human youths (ages 8-23y) who completed diffusion imaging, we capitalized upon recent advances in linear dynamical network control theory to calculate the energetic cost necessary to activate the fronto-parietal system through the control of multiple brain regions given existing structural network topology. We found that the energy required to activate the fronto-parietal system declined with development, and the pattern of regional energetic cost predicts unseen individuals’ brain maturity. Finally, energetic requirements of the cingulate cortex were negatively correlated with executive performance, and partially mediated the development of executive performance with age. Our results reveal a mechanism by which structural networks develop during adolescence to reduce the theoretical energetic costs of transitions to activation states necessary for executive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.