Among patients with early-stage laryngeal cancer, we observed an increasing proportion of primary surgical therapy during this study period. Among patients with advanced-stage cancer, we observed an increasing proportion of CRT. Not only were clinical factors associated with type of treatment, but select sociodemographic elements were also associated with treatment. Further investigation as to the decision-making process of patients with different sociodemographic backgrounds will assist in mitigating the differences in survival for this group of patients.
These results confirmed previously reported trends of increasing use of nonsurgical therapy in the treatment of advanced oropharyngeal cancers. In addition, this analysis describes numerous factors that were predictive of overall survival including race, insurance, increasing use of chemoradiation, and socioeconomic status.
Immune checkpoint inhibitors targeting the PD-1 pathway have greatly changed clinical management of metastatic urothelial carcinoma and metastatic renal cell carcinoma. However, response rates are low, and biomarkers are needed to predict for treatment response. Immunohistochemical quantification of PD-L1 was developed as a promising biomarker in early clinical trials, but many shortcomings of the four different assays (different antibodies, disparate cellular populations, and different thresholds of positivity) have limited its clinical utility. Further limitations include the use of archival specimens to measure this dynamic biomarker. Indeed, until PD-L1 testing is standardized and can consistently predict treatment outcome, the currently available PD-L1 assays are not clinically useful in urothelial and renal cell carcinoma. Other more promising biomarkers include tumor mutational burden, profiles of tumor infiltrating lymphocytes, molecular subtypes, and PD-L2. Potentially, a composite biomarker may be best but will need prospective testing to validate such a biomarker.
The goal of sequencing the entire human genome for $1,000 is almost in sight. However, the total costs including DNA sequencing, data management, and analysis to yield a clear data interpretation are unlikely to be lowered significantly any time soon to make studies on a population scale and daily clinical uses feasible. Alternatively, the targeted enrichment of specific groups of disease and biological pathway-focused genes and the capture of up to an entire human exome (~1% of the genome) allowing an unbiased investigation of the complete protein-coding regions in the genome are now routine. Targeted gene capture followed by sequencing with massively parallel next-generation sequencing (NGS) has the advantages of 1) significant cost saving, 2) higher sequencing accuracy because of deeper achievable coverage, 3) a significantly shorter turnaround time, and 4) a more feasible data set for a bioinformatic analysis outcome that is functionally interpretable. Gene capture combined with NGS has allowed a much greater number of samples to be examined than is currently practical with whole-genome sequencing. Such an approach promises to bring a paradigm shift to biomedical research of Mendelian disorders and their clinical diagnoses, ultimately enabling personalized medicine based on one’s genetic profile. In this review, we describe major methodologies currently used for gene capture and detection of genetic variations by NGS. We will highlight applications of this technology in studies of genetic disorders and discuss issues pertaining to applications of this powerful technology in genetic screening and the discovery of genes implicated in syndromic and non-syndromic hearing loss.
BackgroundLow-density lipoprotein receptor-related protein 1b (encoded by LRP1B) is a putative tumor suppressor, and preliminary evidence suggests LRP1B-mutated cancers may have improved outcomes with immune checkpoint inhibitors (ICI).MethodsWe conducted a multicenter, retrospective pan-cancer analysis of patients with LRP1B alterations treated with ICI at Duke University, Johns Hopkins University (JHU) and University of Michigan (UM). The primary objective was to assess the association between overall response rate (ORR) to ICI and pathogenic or likely pathogenic (P/LP) LRP1B alterations compared with LRP1B variants of unknown significance (VUS). Secondary outcomes were the associations with progression-free survival (PFS) and overall survival (OS) by LRP1B status.ResultsWe identified 101 patients (44 Duke, 35 JHU, 22 UM) with LRP1B alterations who were treated with ICI. The most common tumor types by alteration (P/LP vs VUS%) were lung (36% vs 49%), prostate (9% vs 7%), sarcoma (5% vs 7%), melanoma (9% vs 0%) and breast cancer (3% vs 7%). The ORR for patients with LRP1B P/LP versus VUS alterations was 54% and 13%, respectively (OR 7.5, 95% CI 2.9 to 22.3, p=0.0009). P/LP LRP1B alterations were associated with longer PFS (HR 0.42, 95% CI 0.26 to 0.68, p=0.0003) and OS (HR 0.62, 95% CI 0.39 to 1.01, p=0.053). These results remained consistent when excluding patients harboring microsatellite instability (MSI) and controlling for tumor mutational burden (TMB).ConclusionsThis multicenter study shows significantly better outcomes with ICI therapy in patients harboring P/LP versus VUS LRP1B alterations, independently of TMB/MSI status. Further mechanistic and prospective validation studies are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.