We propose a novel approach to estimate asset pricing models for individual stock returns that takes advantage of the vast amount of conditioning information, while keeping a fully flexible form and accounting for time-variation. Our general non-linear asset pricing model is estimated with deep neural networks applied to all U.S. equity data combined with a substantial set of macroeconomic and firm-specific information. We estimate the stochastic discount factor that explains all asset returns from the conditional moment constraints implied by no-arbitrage. Our asset pricing model outperforms out-of-sample all other benchmark approaches in terms of Sharpe ratio, explained variation and pricing errors. We trace its superior performance to including the no-arbitrage constraint in the estimation and to accounting for macroeconomic conditions and non-linear interactions between firm-specific characteristics. Our generative adversarial network enforces no-arbitrage by identifying the portfolio strategies with the most pricing information. Our recurrent Long-Short-Term-Memory network finds a small set of hidden economic state processes. A feedforward network captures the non-linear effects of the conditioning variables. Our model allows us to identify the key factors that drive asset prices and generate profitable investment strategies.
We use deep neural networks to estimate an asset pricing model for individual stock returns that takes advantage of the vast amount of conditioning information, keeps a fully flexible form, and accounts for time variation. The key innovations are to use the fundamental no-arbitrage condition as criterion function to construct the most informative test assets with an adversarial approach and to extract the states of the economy from many macroeconomic time series. Our asset pricing model outperforms out-of-sample all benchmark approaches in terms of Sharpe ratio, explained variation, and pricing errors and identifies the key factors that drive asset prices. This paper was accepted by Agostino Capponi, finance. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4695 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.