SummaryUnder conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue.
Homophilic interactions between E-Cadherin molecules generate adhesive interfaces or junctions (AJs) that connect neighbouring cells in epithelial monolayers. These are highly dynamic structures. Under conditions of homeostasis, changes in the length of individual interfaces provide epithelia with the fluidity required to maintain tissue integrity in the face of cell division, delamination and extrinsic forces. Furthermore, when acted upon by polarized actomyosin-based forces, changes in AJ length can also drive neighbour exchange to reshape an entire tissue. Whilst the contribution of AJ remodelling to developmental morphogenesis has been subjected to intensive study, less is known about AJ dynamics in other circumstances. Here, using a combination of experiment and computational modelling, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order without concomitant large-scale changes in tissue shape or size. Under these conditions, we find that neighbour exchange events are driven by stochastic fluctuations in junction length, which are regulated at least in part by the level of junctional actomyosin. As a result of this behaviour, the steady increase in junctional actomyosin and consequent tension that accompanies development steadily reduces the rate of neighbour exchange and orders the tissue. This leads us to propose a model in which topological transitions, that underpin tissue fluidity, are either inhibited or biased by actomyosin-based forces, to drive, respectively, tissue ordering or deformation.
We propose a theory
to predict the passive translocation of flexible
polymers through amphiphilic membranes. By using a generic model for
the potential felt by a monomer across the membrane we calculate the
free energy profile for homopolymers as a function of their hydrophobicity.
Our model explains the translocation window and the translocation
rates as a function of chain hydrophobicity in quantitative agreement
with simulation results. The potential model leads to a new adsorption
transition where chains switch from a one-sided bound adsorbed state
into a bridging state through the membrane core by increasing the
hydrophobicity beyond a critical value. We demonstrate that the hydrophobicity
leading to the fastest translocation coincides with the solution for
the critical point of adsorption in the limit of long chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.