The primary issue faced by MnO2 cathode materials for aqueous Zn-ion batteries (AZIBs) is the occurrence of structural transformations during cycling, resulting in unstable capacity output. Pre-intercalating closely bonded ions...
The hydrogen evolution reaction (HER) is a critical process in the electrolysis of water. Recently, much effort has been dedicated to developing low‐cost, highly efficient, and stable electrocatalysts. Transition metal phosphides are investigated intensively due to their high electronic conductivity and optimized absorption energy of intermediates in acid electrolytes. However, the low stability of metal phosphide materials in air and during electrocatalytic processes causes a decay of performance and hinders the discovery of specific active sites. The HER in alkaline media is more intricate, which requires further delicate design due to the Volmer steps. In this work, phosphorus‐modified monoclinic β‐CoMoO4 is developed as a low‐cost, efficient, and stable HER electrocatalyst for the electrolysis of water in alkaline media. The optimized catalyst shows a small overpotential of 94 mV to reach a current density of 10 mA cm−2 for the HER with high stability in KOH electrolyte, and an overpotential of 197 mV to reach a current density of 100 mA cm−2. Combined computational and in situ spectroscopic techniques show P is present as a surface phosphate ion; that electron holes localize on the surface ions and both (PO1−) and Co3+OH− are prospective surface active sites for the HER.
Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.