Plants are exposed to an ever-changing environment to which they have to adjust accordingly. Their response is tightly regulated by complex signaling pathways that all start with stimulus perception. Here, we give an overview of the latest developments in the perception of various abiotic stresses, including drought, salinity, flooding, and temperature stress. We discuss whether proposed perception mechanisms are true sensors, which is well established for some abiotic factors but not yet fully elucidated for others. In addition, we review the downstream cellular responses, many of which are shared by various stresses but result in stress-specific physiological and developmental output. New sensing mechanisms have been identified, including heat sensing by the photoreceptor phytochrome B, salt sensing by glycosylinositol phosphorylceramide sphingolipids, and drought sensing by the specific calcium influx channel OSCA1. The simultaneous occurrence of multiple stress conditions shows characteristic downstream signaling signatures that were previously considered general signaling responses. The integration of sensing of multiple stress conditions and subsequent signaling responses is a promising venue for future research to improve the understanding of plant abiotic stress perception.
Due to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis, we investigated the Catharanthus roseus Receptor like Kinase 1 Like family, containing sensors previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1the1-4 double mutants, lacking the function of HERKULES1 (HERK1) combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function. We report that salt triggers pectin methyl esterase (PME) activation and show its requirement for the activation of several salt-dependent responses. Because chemical inhibition of PMEs alleviates these salt-induced responses, we hypothesize a model where salt directly leads to cell wall modifications through the activation of PMEs. Responses to salt partly require the functionality of FER alone or the HERK1/THE1 combination to attenuate salt effects, highlighting the complexity of the salt sensing mechanisms that rely on the cell wall integrity.
Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes–WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)–are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.
Soil salinity is an increasing worldwide problem for agriculture, affecting plant growth and yield. In our attempt to understand the molecular mechanisms activated in response to salt in plants, we investigated the Catharanthus roseus Receptor like Kinase 1 Like (CrRLK1L) family, which contains well described sensors previously shown to be involved in maintaining and sensing the structural integrity of the cell walls. We have observed that herk1the1-4 double mutants, lacking the function of the Arabidopsis thaliana Receptor like Kinase HERKULES1 combined with a gain of function allele of THESEUS1, phenocopied the phenotypes previously reported in plants lacking FERONIA (FER) function. We report that both fer-4 and herk1the1-4 mutants respond strongly to salt application, resulting in a more intense activation of early and late stress responses. We also show that salt triggers de-methyl esterification of loosely bound pectins. These cell wall modifications might be partly responsible for the activation of the signaling pathways required to activate salt stress responses. In fact, by adding calcium chloride or by chemically inhibiting pectin methyl esterase (PME) activity we observed reduced activation of the early signaling protein Mitogen Activated Protein Kinase 6 (MPK6) as well as a reduced amplitude in salt-induced marker gene induction. We show that MPK6 is required for the full induction of the salt-induced gene expression markers we tested. However, the sodium specific root halotropism response is likely regulated by a different branch of the pathway being independent of MPK6 or calcium application but influenced by the cell wall sensors FER/HERK1/THE1-4 and PME activity. We hypothesize a model where salt-triggered modification of pectin requires the functionality of FER alone or the HERK1/THE1 combination to attenuate salt responses. Collectively, our results show the complexity of salt stress responses and salt sensing mechanisms and their connection to cell wall modifications, likely being in part responsible for the response phenotypes observed in salt treated plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.