The development of assessment methods for the performance of Automated Vehicles (AVs) is essential to enable the deployment of automated driving technologies, due to the complex operational domain of AVs. One candidate is scenariobased assessment, in which test cases are derived from real-world road traffic scenarios obtained from driving data. Because of the high variety of the possible scenarios, using only observed scenarios for the assessment is not sufficient. Therefore, methods for generating additional scenarios are necessary.Our contribution is twofold. First, we propose a method to determine the parameters that describe the scenarios to a sufficient degree while relying less on strong assumptions on the parameters that characterize the scenarios. By estimating the probability density function (pdf) of these parameters, realistic parameters values can be generated. Second, we present the Scenario Representativeness (SR) metric based on the Wasserstein distance, which quantifies to what extent the scenarios with the generated parameter values are representative of real-world scenarios while covering the actual variety found in the realworld scenarios.A comparison of our proposed method with methods relying on assumptions of the scenario parameterization and pdf estimation shows that the proposed method can automatically determine the optimal scenario parameterization and pdf estimation. Furthermore, it is demonstrated that our SR metric can be used to choose the (number of) parameters that best describe a scenario. The presented method is promising, because the parameterization and pdf estimation can directly be applied to already available importance sampling strategies for accelerating the evaluation of AVs.
Many diseases recur after recovery, for example, recurrences in cancer and infections. However, research is often focused on analysing only time-to-first recurrence, thereby ignoring any subsequent recurrences that may occur after the first. Statistical models for the analysis of recurrent events are available, of which the extended Cox proportional hazards frailty model is the current state-of-the-art. However, this model is too statistically complex for computationally efficient application in high-dimensional data sets, including genome-wide association studies (GWAS). Here, we develop an application for fast and accurate recurrent event analysis in GWAS, called SPARE (SaddlePoint Approximation for Recurrent Event analysis). In SPARE, every DNA variant is tested for association with recurrence risk using a modified score statistic. A saddlepoint approximation is implemented to achieve statistical accuracy. SPARE controls the Type I error, and its statistical power is similar to existing recurrent event models, yet SPARE is significantly faster. An application of SPARE in a recurrent event GWAS on bladder cancer for 6.2 million DNA variants in 1,443 individuals required less than 15 min, whereas existing recurrent event methods would require several weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.