At the time of this study, the SARS-CoV-2 virus that caused the COVID-19 pandemic has spread significantly across the world. Considering the uncertainty about policies, health risks, financial difficulties, etc. the online media, especially the Twitter platform, is experiencing a high volume of activity related to this pandemic. Among the hot topics, the polarized debates about unconfirmed medicines for the treatment and prevention of the disease have attracted significant attention from online media users. In this work, we present a stance data set, COVID-CQ, of user-generated content on Twitter in the context of COVID-19. We investigated more than 14 thousand tweets and manually annotated the tweet initiators’ opinions regarding the use of “chloroquine” and “hydroxychloroquine” for the treatment or prevention of COVID-19. To the best of our knowledge, COVID-CQ is the first data set of Twitter users’ stances in the context of the COVID-19 pandemic, and the largest Twitter data set on users’ stances towards a claim, in any domain. We have made this data set available to the research community via the Mendeley Data repository. We expect this data set to be useful for many research purposes, including stance detection, evolution and dynamics of opinions regarding this outbreak, and changes in opinions in response to the exogenous shocks such as policy decisions and events.
Online users discuss and converse about all sorts of topics on social networks. Facebook, Twitter, Reddit are among many other networks where users can have this freedom of information sharing. The abundance of information shared over these networks makes them an attractive area for investigating all aspects of human behavior on information dissemination. Among the many interesting behaviors, controversiality within social cascades is of high interest to us. It is known that controversiality is bound to happen within online discussions. The online social network platform Reddit has the feature to tag comments as controversial if the users have mixed opinions about that comment. The difference between this study and previous attempts at understanding controversiality on social networks is that we do not investigate topics that are known to be controversial. On the contrary, we examine typical cascades with comments that the readers deemed to be controversial concerning the matter discussed. This work asks whether controversially initiated information cascades have distinctive characteristics than those not controversial in Reddit. We used data collected from Reddit consisting of around 17 million posts and their corresponding comments related to cybersecurity issues to answer these emerging questions. From the comparative analyses conducted, controversial content travels faster and further from its origin. Understanding this phenomenon would shed light on how users or organization might use it to their help in controlling and spreading a specific beneficiary message.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.