Background/AimsJX-594 is an oncolytic virus derived from the Wyeth vaccinia strain that causes replication-dependent cytolysis and antitumor immunity. Starting with a cross-examination of clinical-trial samples from advanced hepatocellular carcinoma patients having high levels of aldosterone and virus amplification in JX-594 treatment, we investigated the association between virus amplification and aldosterone in human cancer cell lines.MethodsCell proliferation was determined by a cell-counting-kit-based colorimetric assay, and vaccinia virus quantitation was performed by quantitative polymerase chain reaction (qPCR) and a viral plaque assay. Also, the intracellular pH was measured using a pH-sensitive dye.ResultsSimultaneous treatment with JX-594 and aldosterone significantly increased viral replication in A2780, PC-3, and HepG2 cell lines, but not in U2OS cell lines. Furthermore, the aldosterone treatment time altered the JX-594 replication according to the cell line. The JX-594 replication peaked after 48 and 24 hours of treatment in PC-3 and HepG2 cells, respectively. qPCR showed that JX-594 entry across the plasma membrane was increased, however, the changes are not significant by the treatment. This was inhibited by treatment with spironolactone (an aldosterone-receptor inhibitor). JX-594 entry was significantly decreased by treatment with EIPA [5-(N-ethyl-N-isopropyl)amiloride; a Na+/H+-exchange inhibitor], but aldosterone significantly restored JX-594 entry even in the presence of EIPA. Intracellular alkalization was observed after aldosterone treatment but was acidified by EIPA treatment.ConclusionsAldosterone stimulates JX-594 amplification via increased virus entry by affecting the H+ gradient.
Sorafenib is the only approved systemic, therapeutic agent for hepatocellular carcinoma (HCC). The use of Ginseng Extract (GE) in cancer patients is growing worldwide; however, drug interaction between sorafenib and GE has not been illuminated. Four different human cancer cell lines including HepG2 were used and immunocompetent mice were implanted subcutaneously with a mouse HCC cell line. Treatment with low dose GE stimulated cell growth, while a high dose inhibited growth. pERK (phosphorylation of extracellular signal-regulated kinase) was concomitantly increased and decreased respective of different doses of GE. Antitumoral effect of sorafenib decreased in non-proliferating phase cells but was sensitized after low dose GE (LDG) treatment. PD98059 (ERK phosphorylation inhibitor) efficiently blocked ERK phosphorylation, resulting in loss of sorafenib sensitization even after LDG treatment. In the HCC mouse model, LDG alone slightly increased tumor size while sorafenib alone significantly decreased it. However, a combination of LDG and sorafenib significantly decreased tumor size compared with sorafenib alone. Increase of pERK was observed in some normal mice organs and mild inflammatory change was observed in some of these organs, suggesting pERK activation by LDG may cause unexpected toxicity in normal cells. GE, dose-dependently, induced stimulation or inhibition in some human cancer cell lines. Combinational use of GE and sorafenib possibly potentiated an antitumoral response to sorafenib. pERK level has been provided as a potential predictive marker for sorafenib. Our result may suggest GE's dual effects in relation to pERK level in HCC cancer cell lines, and that certain doses of GE can sensitize sorafenib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.