Accurate estimates for the oral bioavailability of hydrophobic contaminants bound to solid matrices are challenging to obtain because of sorption to organic matter. The purpose of this research was to measure the bioavailability of [14C]chrysene sorbed to soil using an in vitro model of gastrointestinal digestion and absorption to a surrogate intestinal membrane, ethylene vinyl acetate (EVA) thin film. The [14C]chrysene moved rapidly from soil into the aqueous compartment and reached steady state within 2 h. Equilibrium was reached in the EVA film within 32 h. Aging the spiked soil for 6 or 12 months had no effect on chrysene mobilization. This was supported by the finding that the data best fit a one-compartment model. Despite significant decreases in [14C]chrysene mobilization when water or nonneutralized gastrointestinal fluids were used in place of the complete medium, the equilibrium concentration of [14C]chrysene in EVA film remained the same in all conditions. Thus, the driving force for uptake was the fugacity gradient between the aqueous phase and the EVA film. Cultured human enterocytes (human colorectal carcinoma cell line [Caco-2 cells]) had a higher lipid-normalized fugacity capacity than EVA film, but the elimination rate constants were the same, suggesting that the rate was controlled by the resistance of the unstirred aqueous layer at the membrane-water interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.