Vibration energy harvesting is an emerging technology that enables electric power generation using piezoelectric devices. The prevailing approach for characterization of the energy-harvesting capacity in these devices is to consider a finite structure operating under forced vibration conditions. Here, we present an alternative framework whereby the intrinsic energy-harvesting characteristics are formally quantified independent of the forcing and the structure size. In doing so, we consider the notion of a piezoelectric material rather than a finite piezoelectric structure. As an example, we consider a suspended piezoelectric phononic crystal to which we apply Bloch's theorem and formally quantify the energy-harvesting characteristics within the span of the unit cell's Brillouin zone (BZ). In the absence of shunted piezoelectric circuits, the wavenumber-dependent dissipation of the phononic crystal is calculated and shown to increase, as expected, with the level of prescribed damping. With the inclusion of the piezoelectric elements, the wavenumber-dependent dissipation rises by an amount proportional to the energy available for harvest which upon integration over the BZ and summing over all branches yields a quantity representative of the net available energy for harvesting. We investigate both monoatomic and diatomic phononic crystals and piezoelectric elements with and without an inductor. The paper concludes with a parametric design study yielding optimal piezoelectric element properties in terms of the proposed intrinsic energy-harvesting availability measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.