Sheath blight of rice (Oryza sativa L.) caused by Rhizoctonia solani is a major disease and attempts are being made to develop microbe based technologies for biocontrol of this pathogen. However, the mechanisms of biocontrol are not fully understood and still require indepth study in the backdrop of emerging concepts in biological systems. The present investigation was aimed at deciphering the mechanisms of biocontrol of sheath blight of rice employing Pseudomonas fluorescens and Trichoderma harzianum as model agents for biocontrol. Initially 25, 5 and 5 strains of P. fluorescens, T. viride and T. harzianum, respectively, were screened for their biocontrol potential. Out of which, six strains with higher value of percent inhibition of fungal mycelium in dual plate assay were selected. The role of P. fluorescens, T. viride and T. harzianum were investigated in induction and bioaccumulation of natural antioxidants, defence-related biomolecules and other changes in plant which lead not only to growth promotion but also protection from pathogenic stress conditions in rice. The two most promising strains, P. fluorescens PF-08 and T. harzianum UBSTH-501 selected on the basis of in planta evaluation, when applied individually or in combination, significantly enhanced the accumulation of defence-related biomolecules, enzymes and exhibited biocontrol potential against R. solani. A modified/newly developed delivery system was applied for the first time in the experiments involving inoculation of plants with both bioagents, viz. P. fluorescens PF-08 and T. harzianum UBSTH-501. Results suggested that application of P. fluorescens PF-08 and T. harzianum UBSTH-501 alone or in combination, not only helps in control of the disease but also increases plant growth along with reduction in application of toxic chemical pesticides.
These days, electronic waste needs to be taken into consideration due to its materials content, but due to the heterogeneity of the metals present, reprocessing of electronic waste is quite limited. The bioleaching of metals from electronic waste was investigated by using cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens). A two-step bioleaching process was followed under cyanide-forming conditions for maximum metals mobilization. Both single and mixed cultures of cyanogenic bacteria were able to mobilize metals from electronic waste with different efficiencies. In all the flasks in which high metal mobilizations were observed, the consequent biomass productions were also high. Pseudomonas aeruginosa was applied in the bioleaching process for the first time and this achieved its bioleaching ability of mobilization of metals from electronic waste. Chromobacterium violaceum as a single culture and a mixture of C. violaceum and P. aeruginosa exhibited maximum metal mobilization. Chromobacterium violaceum was capable of leaching more than 79, 69, 46, 9 and 7% of Cu, Au, Zn, Fe and Ag, respectively at an electronic waste concentration of 1% w/v. Moreover, the mixture of C. violaceum and P. aeruginosa exhibited metals leaching of more than 83, 73, 49, 13 and 8% of total Cu, Au, Zn, Fe, and Ag, respectively. Precious metals were mobilized through bioleaching which might be considered as an industrial application for recycling of electronic waste in the near future.
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
Calcium oxide (CaO) is a promising material that works as a glass constituent, catalyst, toxicwaste remediation, poisonous gas absorbent, industrial refectory element for metal smelting, paper bleaching, sulfur neutralization in sugar, cosmetics and drug delivery mediator. This work proposes the synthesis of CaO nanoparticles by direct precipitation technique using an aqueous solution of calcium chloride and sodium hydroxide precursors. The synthesized nanoparticles are characterized for the structure, morphology, chemical composition and optical behavior using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and diffuse reflectance spectroscopy. The XRD results show that the CaO nanoparticles have been synthesized in a cubic crystalline structure with the average crystallite size of about 13 nm and display aggregated morphology of nanoclusters. The presence of distinct peaks in the FTIR and EDS spectra reveal that the nanoparticles are successfully formed from the chemical recipe of the precipitation process. The optical bandgap has been estimated from the Kubelka-Munk plot and found to be 3.48 eV. The antibacterial activity of CaO nanoparticles has been tested by the well diffusion technique and observed that it shows good antibacterial action against the gram-negative bacterial strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.