Scatter signals in cone-beam computed tomography (CBCT) cause a significant problem that degrades image quality of reconstructed images, such as inaccuracy of CT numbers and cupping artifacts. In this paper, we will present an experiment-based scatter correction method by pre-processing projection images using a statistical model combined with experimental kernels. The convolution kernels are estimated by using different thickness of PMMA plates attached to a beam stop lead sheet such that the scatter signal values can be measure in the shadow area of the projection images caused by the lead sheet. The scatter signal values of different thickness levels can be measured in the shadow area of projection images caused by the lead sheet. Then, the projection images are convolved with the kernels that are derived from the actual measurement of scatter signals in PMMA plates. Finally, the primary signals can be estimated using the maximum likelihood expectation maximization method. Experimental results by using the proposed method show that the quality of the reconstruction images is significantly improved. The CT numbers become more accurate and the cupping artifact is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.