1,8-Dihydroxy-2-naphthaldehyde (DHNA), having doubly intramolecular hydrogen bonds, was strategically designed and synthesized in an aim to probe a long-standing fundamental issue regarding synchronous versus asynchronous double-proton transfer in the excited state. In cyclohexane, DHNA shows the lowest lying S0 →S1 (π-π*) absorption at ∼400 nm. Upon excitation, two large Stokes shifted emission bands maximized at 520 and 650 nm are resolved, which are ascribed to the tautomer emission resulting from the first and second proton-transfer products, denoted by TA* and TB*, respectively. The first proton transfer (DHNA* → TA*) is ultrafast (< system response of 150 fs), whereas the second proton transfer is reversible, for which the rates of forward (TA* → TB*) and backward (TA* ← TB*) proton transfer were determined to be (1.7 ps)(-1) and (3.6 ps)(-1), respectively. The fast equilibrium leads to identical population lifetimes of ∼54 ps for both TA* and TB* tautomers. Similar excited-state double-proton transfer takes place for DHNA in a single crystal, resulting in TA* (560 nm) and TB* (650 nm) dual-tautomer emission. A comprehensive 2D plot of reaction potential energy surface further proves that the sequential two-step proton motion is along the minimum energetic pathway firmly supporting the experimental results. Using DHNA as a paradigm, we thus demonstrate unambiguously a stepwise, proton-relay type of intramolecular double-proton transfer reaction in the excited state, which should gain fundamental understanding of the multiple proton transfer reactions.
Scientists have made tremendous efforts to gain understanding of the water molecules in proteins via indirect measurements such as molecular dynamic simulation and/or probing the polarity of the local environment. Here we present a tryptophan analogue that exhibits remarkable water catalysed proton-transfer properties. The resulting multiple emissions provide unique fingerprints that can be exploited for direct sensing of a site-specific water environment in a protein without disrupting its native structure. Replacing tryptophan with the newly developed tryptophan analogue we sense different water environments surrounding the five tryptophans in human thromboxane A 2 synthase. This development may lead to future research to probe how water molecules affect the folding, structures and activities of proteins.
We report the design strategy and synthesis of a structurally locked GFP core chromophore p-LHBDI, its ortho-derivative, o-LHBDI, and H2BDI possessing both para- and ortho-hydroxyl groups such that the inherent rotational motion of the titled compounds has been partially restricted. o-LHBDI possesses a doubly locked configuration, i.e., the seven-membered ring hydrogen bond and five-membered ring C(4-5-10-13-14) cyclization, from which the excited-state intramolecular proton transfer takes place, rendering a record high tautomer emission yield (0.18 in toluene) and the generation of amplified spontaneous emission. Compared with their unlocked counterparts, a substantial increase in the emission yield is also observed for p-LHBDI and H2BDI in anionic forms in water, and accordingly the structure versus luminescence relationship is fully discussed based on their chemistry and spectroscopy aspect. In solid, o-LHBDI exhibits an H-aggregate-like molecular packing, offers narrow-bandwidth emission, and has been successfully applied to fabricate a yellow organic light emitting diodes (λmax = 568 nm, ηext = 1.9%) with an emission full width at half-maximum as narrow as 70 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.