Aims: The effect of the natural product thymol on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in MG63 human osteosarcoma cells was examined. Methods: The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Results: Thymol at concentrations of 200–1,000 µmol/l induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Thymol-induced Ca2+ entry was inhibited by nifedipine, econazole, SK&F96365 and protein kinase C modulators. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited the thymol-induced [Ca2+]i rise. Incubation with thymol also inhibited the thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished the thymol-induced [Ca2+]i rise. At concentrations of 100–600 µmol/l, thymol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/AM. Annexin V/propidium iodide staining data suggest that thymol (200 and 400 µmol/l) induced apoptosis in a concentration-dependent manner. Thymol (200 and 400 µmol/l) also increased levels of reactive oxygen species. Conclusions: In MG63 cells, thymol induced a [Ca2+]i rise by inducing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via protein kinase C-sensitive store-operated Ca2+ channels. Thymol induced cell death that may involve apoptosis via mitochondrial pathways.
The effect of diindolylmethane, a natural compound derived from indole-3-carbinol in cruciferous vegetables, on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in HA59T human hepatoma cells is unclear. This study explored whether diindolylmethane changed [Ca(2+)](i) in HA59T cells. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 1-50 μM evoked a [Ca(2+)](i) rise in a concentration-dependent manner. The signal was reduced by removing Ca(2+). Diindolylmethane-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators but was inhibited by aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 10-75 μM, diindolylmethane killed cells in a concentration-dependent manner. The cytotoxic effect of diindolylmethane was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining data suggest that diindolylmethane (25-50 μM) induced apoptosis in a concentration-dependent manner. Collectively, in HA59T cells, diindolylmethane induced a [Ca(2+)](i) rise by causing phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. Diindolylmethane induced cell death that may involve apoptosis.
NPC-14686 has been shown to have anti-inflammatory effect in previous studies, but the mechanisms are unclear. The effect of NPC-14686 on cytosolic Ca²⁺ concentrations ([Ca²⁺]i) and viability in MG63 human osteosarcoma cells was explored. The Ca²⁺-sensitive fluorescent dye fura-2 was applied to measure [Ca²⁺]i. NPC-14686 at concentrations of 100-500 μM induced a [Ca²⁺]i rise in a concentration-dependent manner. The response was reduced by 80% by removing Ca²⁺. NPC-14686 induced Mn²⁺ influx leading to quenching of fura-2 fluorescence. NPC-14686-evoked Ca²⁺ entry was suppressed by nifedipine, econazole, SK&F96365, and protein kinase C inhibitor. Inhibition of phospholipase C with U73122 abolished NPC-14686-induced [Ca²⁺]i rise. At 20-50 μM, NPC-14686 decreased cell viability, which was not reversed by chelating cytosolic Ca²⁺ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that NPC-14686 (30-50 μM) induced apoptosis in a concentration-dependent manner. NPC-14686 also increased levels of reactive oxygen species. Together, in human osteosarcoma cells, NPC-14686 induced a [Ca²⁺]i rise by inducing phospholipase C-dependent Ca²⁺ release from the endoplasmic reticulum and Ca²⁺ entry via protein kinase C-sensitive store-operated Ca²⁺ channels. NPC-14686 induced cell death that might involve apoptosis via mitochondrial pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.