Tube and lumen formation are essential steps in forming a functional vasculature. Despite their significance, our understanding of these processes remains limited, especially at the cellular and molecular levels. In this study, we analyze mechanisms of angioblast coalescence in the zebrafish embryonic midline and subsequent vascular tube formation. To facilitate these studies, we generated a transgenic line where EGFP expression is controlled by the zebrafish flk1 promoter. We find that angioblasts migrate as individual cells to form a vascular cord at the midline. This transient structure is stabilized by endothelial cell-cell junctions, and subsequently undergoes lumen formation to form a fully patent vessel. Downregulating the VEGF signaling pathway, while affecting the number of angioblasts, does not appear to affect their migratory behavior. Our studies also indicate that the endoderm, a tissue previously implicated in vascular development, provides a substratum for endothelial cell migration and is involved in regulating the timing of this process, but that it is not essential for the direction of migration. In addition, the endothelial cells in endodermless embryos form properly lumenized vessels, contrary to what has been previously reported in Xenopus and avian embryos. These studies provide the tools and a cellular framework for the investigation of mutations affecting vasculogenesis in zebrafish.
Defects in cardiac valve morphogenesis and septation of the heart chambers constitute some of the most common human congenital abnormalities. Some of these defects originate from errors in atrioventricular (AV) endocardial cushion development. Although this process is being extensively studied in mouse and chick, the zebrafish system presents several advantages over these models, including the ability to carry out forward genetic screens and study vertebrate gene function at the single cell level. In this paper, we analyze the cellular and subcellular architecture of the zebrafish heart during stages of AV cushion and valve development and gain an unprecedented level of resolution into this process. We find that endocardial cells in the AV canal differentiate morphologically before the onset of epithelial to mesenchymal transformation, thereby defining a previously unappreciated step during AV valve formation. We use a combination of novel transgenic lines and fluorescent immunohistochemistry to analyze further the role of various genetic (Notch and Calcineurin signaling) and epigenetic (heart function)pathways in this process. In addition, from a large-scale forward genetic screen we identified 55 mutants, defining 48 different genes, that exhibit defects in discrete stages of AV cushion development. This collection of mutants provides a unique set of tools to further our understanding of the genetic basis of cell behavior and differentiation during AV valve development.
heart of glass encodes a previously uncharacterized endocardial signal that is vital for patterning concentric growth of the heart. Growth of the heart requires addition of myocardial cells along the endocardial-to-myocardial axis. This axis of patterning is driven by heg, a novel transmembrane protein expressed in the endocardium.
Hedgehog (Hh) signaling is essential for multiple aspects of embryogenesis1 , 2. In Drosophila, Hh transduction is mediated by a cytoplasmic signaling complex3 -5 that includes the putative serinethreonine kinase Fused (Fu) and the kinesin Costal 2 (Cos2), yet Fu does not play a conserved role in Hh signaling in mammals6 , 7. Mouse Fu mutants are viable and appear to respond normally to Hh signaling. Here we show that mouse Fu is essential for construction of the central pair (CP) apparatus of motile, 9+2 cilia and offers a novel model of human primary ciliary dyskinesia. We found that mouse Fu physically interacts with Kif27, a mammalian Cos2 ortholog8, and linked Fu to known structural components of the CP apparatus, providing evidence for the first regulatory component involved in CP construction. We also demonstrated that zebrafish Fu is required both for Hh signaling and cilia biogenesis in Kupffer's vesicle. Mouse Fu rescued both Hh-dependent and independent defects in zebrafish. Our results delineate a novel pathway for CP apparatus assembly, identify common regulators of Hh signaling and motile ciliogenesis, and add insight into evolution of the Hh cascade.To further investigate the role of Fu in mammalian Hh signaling, we asked whether Hhdependent Smo localization to the primary cilium is affected in the absence of Fu. Primary cilia, which have a "9+0" arrangement of 9 outer doublet microtubules (MTs), are required for Hh responses and contain several Hh pathway components2 , 9. We found that Fu -/-mouse embryonic fibroblasts (MEFs) formed primary cilia normally, trafficked Smo to the primary cilium in response to Hh ligand, and exhibited a typical Gli transcriptional response (Supplementary Fig. 1 , 2; data not shown). This suggests that the single mammalian Fu ortholog is dispensable for Hh signaling. To explore the function of Fu in mice, we examined its expression in postnatal tissues by in situ hybridization. Fu transcript was expressed strongly in the respiratory epithelium, the ependymal lining of the ventricles in the brain, and in oviduct and testis ( Fig. 1a-c; data not shown). These expression patterns are reminiscent of genes involved in biogenesis of motile cilia, which function in these tissues to propel mucus, fluid and cells. In contrast to the primary cilium, the classical "9+2" motile cilium consists of 9 outer doublet MTs and two singlet central pair (CP) MTs10. The CP apparatus plays a key role in regulating ciliary motility but its formation is poorly understood since the centriole-derived basal body, from which the cilia axoneme extends, does not provide a template for CP outgrowth. Disruption of human motile cilia function leads to primary ciliary dyskinesia (PCD), which is associated with recurrent respiratory infection, hydrocephalus and infertility11 -13. To determine whether motile cilia function is * These authors contributed equally to this work.
Background: Biochemical characterization of voltage-dependent anion channel 2 (VDAC2) is limited due to an inability to obtain functional protein. Results:The crystal structure of VDAC2 suggests a dimer interface that is confirmed by double electron-electron resonance and cross-linking. Conclusion: zfVDAC2 has a fractional dimeric population. Significance: VDAC isoforms are structurally similar, but this study has identified a number of hot spots that require further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.