We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.
The effects of posture on the lymphatic outflow pressure and lymphatic return of albumin were examined in 10 volunteers. Lymph flow was stimulated with a bolus infusion of isotonic saline (0.9%, 12.6 ml/kg body wt) under four separate conditions: upright rest (Up), upright rest with lower body positive pressure (LBPP), supine rest (Sup), and supine rest with lower body negative pressure (LBNP). The increase in plasma albumin content (Delta Alb) during the 2 h after bolus saline infusion was greater in Up than in LBPP: 82.9 +/- 18.5 vs. -28.4 mg/kg body wt. Delta Alb was greater in LBNP than in Sup: 92.6 vs. -22.5 +/- 18.9 mg/kg body wt (P < 0.05). The greater Delta Alb in Up and Sup with LBNP were associated with a lower estimated lymphatic outflow pressure on the basis of the difference in central venous pressure (Delta CVP). During LBPP, CVP was increased compared with Up: 3.8 +/- 1.4 vs. -1.2 +/- 1.2 mmHg. During LBNP, CVP was reduced compared with Sup: -3.0 +/- 2.2 vs. 1.7 +/- 1.0 mmHg. The translocation of protein into the vascular space after bolus saline infusion reflects lymph return of protein and is higher in Up than in Sup. Modulation of CVP with LBPP or LBNP in Up and Sup, respectively, reversed the impact of posture on lymphatic outflow pressure. Thus posture-dependent changes in lymphatic protein transport are modulated by changes in CVP through its mechanical impact on lymphatic outflow pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.