Soil temperature has an important role in agricultural, hydrological, meteorological and climatological studies. In the present research, monthly mean soil temperature at four different depths (5, 10, 50 and 100 cm) was estimated using artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). The monthly mean soil temperature data of 31 stations over Iran were employed. In this process, the data of 21 and 10 stations were used for training and testing stages of used models, respectively. Furthermore, the geographical information including latitude, longitude and altitude as well as periodicity component (the number of months) was considered as inputs in the mentioned intelligent models. The results demonstrated that the ANN and ANFIS models had good performance in comparison with the GEP model. Nevertheless, the ANFIS generally performed better than ANN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.