Special tubular fiberboard with a density of 550 kg/m 3 was manufactured using the round rods for creation of the holes. Physicomechanical properties of tubular fiberboard (6, 8, 10, 12 mm) with various hole diameters and number of hole (0, 1, 2 and 3 in a constant cross section) were evaluated. The surface layers density, especially on top of the holes, considerably elevated with increasing the hole diameter. This did create higher bending properties as well as higher internal bond and surface soundness. The structure of webs between the holes, when the holes' number increases, were predominant factor influencing the panel properties. Weak and loose web structure were obtained by increasing the holes' number from 1 to 3 within a constant cross section (50 mm × 16 mm) that was due to the less transferred fiber during pressing in the webs' sections. A corresponding comparison of panel properties with those in American and European standards presents that the minimum requirements according to most of the standards were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.