The linear control of a nonlinear response is investigated in this paper, and a nonlinear model of the system is developed and validated. The design of the control system has been constrained based on a suggested application, wherein mass and expense are parameters to be kept to a minimum. Through these restrictions, the array of potential applications for the control system is widened. The structure is envisioned as a robot manipulator link, and the control system utilises piezoelectric elements as both sensors and actuators. A nonlinear response is induced in the structure, and the control system is employed to attenuate these vibrations which would be considered a nuisance in practical applications. The nonlinear model is developed based on Euler–Bernoulli beam theory, where unknown parameters are obtained through optimisation based on a comparison with experimentally obtained data. This updated nonlinear model is then compared with the experimental results as a method of empirical validation. This research offers both a solution to unwanted nonlinear vibrations in a system, where weight and cost are driving design factors, and a method to model the response of a flexible link under conditions which yield a nonlinear response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.