When detected at single-base-pair resolution, the genome-wide location, occupancy level, and structural organization of DNA-binding proteins provide mechanistic insights into genome regulation. Here we use ChIP-exo to provide a near-base-pair resolution view of the epigenomic organization of the Escherichia coli transcription machinery and nucleoid structural proteins at the time when cells are growing exponentially and upon rapid reprogramming (acute heat shock). We examined the site specificity of three sigma factors (RpoD/σ70, RpoH/σ32, and RpoN/σ54), RNA polymerase (RNAP or RpoA, -B, -C), and two nucleoid proteins (Fis and IHF). We suggest that DNA shape at the flanks of cognate motifs helps drive site specificity. We find that although RNAP and sigma factors occupy active cognate promoters, RpoH and RpoN can occupy quiescent promoters without the presence of RNAP. Thus, promoter-bound sigma factors can be triggered to recruit RNAP by a mechanism that is distinct from an obligatory cycle of free sigma binding RNAP followed by promoter binding. These findings add new dimensions to how sigma factors achieve promoter specificity through DNA sequence and shape, and further define mechanistic steps in regulated genome-wide assembly of RNAP at promoters in E. coli.
Mediator is a large and evolutionarily conserved coactivator complex essential for RNA polymerase II (Pol II)-mediated gene regulation at multiple steps of the transcription process, including preinitiation complex (PIC) assembly and function. Here, we used the MultiBac baculovirus expression system to generate recombinant human core Mediator subcomplexes and subsequent biochemical approaches to dissect the mechanism by which Mediator facilitates direct recruitment of Pol II to core promoters. Our results highlight a pivotal role in this process for the N-terminal half (NTD) of the MED14 subunit. We show that a reconstituted 15-subunit human core Mediator complex that contains only the MED14-NTD is fully functional in facilitating both basal and activated (p53) transcription. This complex directly interacts with the C-terminal domain (CTD) of the RPB1 subunit of Pol II (RPB1 CTD) and is required for recruiting Pol II to core promoters. Moreover, recombinant RPB1 can completely reverse the human core Mediator-Pol II interaction. Notably, the human MED14-NTD region has secondary structure conservation with Schizosaccharomyces pombe. In addition, reanalysis of published cryo-EM structures of yeast Mediator-Pol II complexes strongly supports our conclusion. Thus, our analyses provide critical new insights into how Mediator binds to Pol II and recruits it to the promoters to facilitate transcription.
Deregulation of glycolysis is common in non-small cell lung cancer (NSCLC). Hexokinase (HK) enzymes catalyze the phosphoryl-group-transfer in glucose metabolism. There are a very few studies that have begun to reveal the connections between glucose metabolism and splicing programs. Unlike HK2 gene, which is expressed as a single transcript, there are several transcripts of the HK1 gene due to alternative splicing. However, the functional differential roles of HK1 isoforms in glucose metabolism and tumor progression are still elusive. Here, we show that primary NSCLC patient tumor cells metabolically differ from the normal lung epithelium where they display predominant expression of one of the HK1 transcripts, hexokinase1b (HK1b). We utilized CRISPR-Cas9 system to selectively target specific HK1b isoform in NSCLC and show that silencing HK1b in NSCLC cells inhibits tumorigenesis through diminishing glycolysis and proliferation. Our findings constitute the first demonstration of the first biochemical distinction between the HK1 splice variants. Finally, HK1b deletion sensitizes NSCLC cells to standard-of-care, cisplatin treatment, and the combination therapy synergistically increases both apoptotic cell death by cisplatin and autophagic cell death by increased formation of LC3-II associated autophagic vesicles and myelinoid bodies. Notably, loss of HK1b leads to cellular DNA damage, further combination with cisplatin therapy showed significantly increased levels of DNA damage. Importantly, we showed that glycolysis and cisplatin resistance can be restored by adding-back HK1b in HK1b knock-out cells. Our findings reveal that targeting HK1b isoform alone or in combination with cisplatin may represent a novel strategy for NSCLC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.