A combined experimental and computational simulation study of direct-current plasma discharge phenomena in small-length-scale geometries (< 10 µm) is described. The primary goal is to study discharge breakdown characteristics in small-length-scale geometries as quantified by a modified Paschen breakdown curve and the quench characteristics in these discharges. A modified mesoscale friction tester apparatus is used for the experiments. A self-consistent nonequilibrium plasma model is used for the simulation studies. The model includes field-emission effects, which is a key process in determining small-length-scale breakdown behavior. The breakdown and quench curves obtained from the experiments and simulations showed the same general trends. Quantification of the heat fluxes from the simulations shows higher erosion at the cathode and a highly nonlinear heating behavior with applied overvoltages above the breakdown threshold.Index Terms-Electrical breakdown, electrical contact at asperity scale, microdischarge, Paschen curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.