This paper presents an experimental analysis of flow-induced vibrations in a heat exchanger tube bundle subjected to crossflow. The study focuses on the characterization and insights gained from the investigation. The tube bundle configuration consists of plain tubes with a single flexible tube, arranged in a squared pattern. The primary objective is to assess the flow-induced vibration behavior and identify any potential instabilities within the system. To analyze the flow-induced vibrations, various parameters were considered, including the P/D ratio (tube pitch to tube diameter ratio), which was found to be 1.54. The experiments were conducted under different flow velocities, and the vibration responses of the tube bundle were measured using suitable sensors. The results revealed that the third row of tubes in the bundle exhibited the highest level of instability compared to the other rows. This finding suggests that the positioning of the tubes within the bundle significantly influences the flow-induced vibrations. The vibrations were observed to vary with the flow velocity, indicating a strong fluid-structure interaction. It can be concluded that the squared arrangement of tubes in the tube bundle, along with the specific P/D ratio, contributes to the flow induced vibration characteristics. Understanding these effects is crucial for optimizing the design and operation of heat exchanger systems, as excessive vibrations can lead to mechanical failures and reduced heat transfer efficiency.
The fluidelastic instability impact of groove cylinders in heat exchangers are investigated in this study, and explores associated phenomena of flow-induced vibration and fluidelastic instability. The primary focus is on investigating the performance of various rows of tubes in the tube bundle, with a particular emphasis on the largest instability identified in the third row. The analysis also considers the impact of a triangular arrangement of tubes within the tube bundle. The addition of groove tubes in the heat exchanger proved to greatly delay the onset of fluidelastic instability, lowering the possibility of flow induced vibration. Despite the improved impact of groove cylinders, the study found that the third row of tubes in the tube bundle had a higher degree of instability than the other rows. This result emphasizes the significance of tube location and arrangement throughout the design phase in reducing fluidelastic behavior. Overall, this study shows that groove tubes may delay fluidelastic instability and reduce the frequency of flow-induced vibration in heat exchangers. The design may significantly improve the operating efficiency and reliability of the heat exchanger by using groove cylinders and carefully studying tube designs and optimize heat exchanger performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.