BackgroundAntibiotics have been increasingly used for veterinary and medical purposes. The overuse of these compounds for these purposes can pollute the environment, water resources in particular. Tetracycline, among other forms of antibiotics, is one of the most applied antibiotic in aquaculture and veterinary medicine. The present study aimed to tack the traces of tetracycline in the effluents of municipal and hospital wastewater treatment plants, surface and groundwater resources and finally the drinking water provided from these water resources.MethodsThe samples were taken from Fasha-Foyeh Dam, wells located at Varamin Plain, and Yaftabad; and also, wastewater samples were collected from the wastewater treatment plant effluents of Emam Khomeini Hospital and a municipal wastewater treatment plant which its effluent is being released to the surface water of the area covered in this work. 24 samples were collected in total during July 2012 to December 2012. The prepared samples were analyzed using high-performance liquid chromatography.ResultsBased on the results, mean tetracycline levels in surface and ground water at nearby of animal farms was found to vary from 5.4 to 8.1 ng L-1. Furthermore, the maximum TC concentration of 9.3 ng L-1 was found to be at Yaft-Abad sampling station. Although tetracycline traces could not be detected in any investigated Hospital WWTP effluents, it was tracked in MWWTP effluent samples, in the concentration range of 280 to 540 ng l−1.ConclusionThe results showed that the concentration of TC in water resource near the animal farms is higher than the other sampling stations. This is related to the usage of antibiotic for animals. In fact, it caused the contamination of water resources and could contribute to radical changes in the ecology of these regions.
This paper presents a two-step enhancement and a comprehensive analysis of single-walled carbon nanotubes (SWCNTs) wrapped polyaniline nanofiber (NPANI) ammonia (NH3) gas sensor at room temperature. SWCNT-PANI composites are successfully synthesized using an efficient and cost-effective rapid in situ chemical polymerization method. The structural morphology and modification of the samples are characterized using field-emission scanning electron microscopy and HRTEM. FTIR and Raman spectroscopic studies are also performed to gain a better insight into the chemical environmental interaction in the as-prepared nanocomposite. The analysis confirms the successful formation of the nanocomposite. The observed NH3 gas-sensing response at 10 ppm of SWCNT, f-SWCNT (functionalised SWCNT), and SWCNT-PANI composite sensors are 5%–6%, 18%–20%, and 24%–25%, respectively. The SWCNT-PANI composite sensors have shown higher repeatability, selectivity, long-term stability, and fast response-recovery characteristics as compared to f-SWCNTs and pristine SWCNT sensors. Concentration and temperature dependent gas-sensing studies are also analyzed. The sensor response also shows a linear relationship with NH3 gas concentration and an inverse relationship with increasing temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.