BackgroundHuman landing collections are currently the standard method for collecting onchocerciasis vectors in Africa and Latin America. As part of the efforts to develop a trap to replace human landing collections for the monitoring and surveillance of onchocerciasis transmission, comprehensive evaluations of several trap types were conducted to assess their ability to collect Simulium ochraceum sensu lato, one of the principal vectors of Onchocerca volvulus in Latin America.Methodology/Principal FindingsDiverse trap designs with numerous modifications and bait variations were evaluated for their abilities to collect S. Ochraceum s.l. females. These traps targeted mostly host seeking flies. A novel trap dubbed the “Esperanza window trap” showed particular promise over other designs. When baited with CO2 and BG-lure (a synthetic blend of human odor components) a pair of Esperanza window traps collected numbers of S. Ochraceum s.l. females similar to those collected by a team of vector collectors.Conclusions/SignificanceThe Esperanza window trap, when baited with chemical lures and CO2 can be used to collect epidemiologically significant numbers of Simulium ochraceum s.l., potentially serving as a replacement for human landing collections for evaluation of the transmission of O. volvulus.
BackgroundResistance to chemical insecticides plus high morbidity rates have lead to rising interest in fungi as candidates for biocontrol agents of mosquito vectors. In most studies fungal infections have been induced by exposure of mosquitoes to various surfaces treated with conidia. In the present study eight Mexican strains of Beauveria bassiana were assessed against Aedes aegypti by direct exposure of females to 6 × 108 conidia ml -1 on a filter paper, afterwards, the transmission of the least and most virulent isolates was evaluated by mating behavior from virgin, fungus-contaminated male to females, to examine this ethological pattern as a new approach to deliver conidia against the dengue vector.MethodsIn an exposure chamber with a filter paper impregnated with 6 × 108 conidia ml -1 of the least and most virulent strains of B. bassiana, 6-8 day old males of A. aegypti were exposed for 48 hours, and then transferred individually (each one was a replicate) to another chamber and confined with twenty healthy females of the same age. Clean males were used in controls. Survival, infection by true mating (insemination) or by mating attempts (no insemination) and fecundity were daily registered until the death of last female. Data analysis was conducted with proc glm for unbalanced experiments and means were separated with the Ryan test with SAS.ResultsAll strains were highly virulent with LT50 ranging from 2.70 (± 0.29) to 5.33 (± 0.53) days. However the most (Bb-CBG2) and least virulent (Bb-CBG4) isolates were also transmitted by mating behavior; both killed 78-90% of females in 15 days after being confined with males that had previously been exposed for 48 hours to fungi. Of these mortality rates, 23 and 38% respectively, were infections acquired by copulations where insemination occurred. The LT50 for sexually-infected females were 7.92 (± 0.46) and 8.82 (± 0.45) days for both strains, while the one in control was 13.92 (± 0.58). Likewise, fecundity decreased by 95% and 60% for both Bb-CBG2 and Bb-CBG4 isolates in comparison with control. The role of mating attempts in this delivery procedure of B. bassiana is discussed.ConclusionsThis is the first report about transmission of B. bassiana by mating behavior from virgin, fungus-contaminated males to females in A. aegypti. Fungal infections acquired by this route (autodissemination) infringed high mortality rates (90%) in mated or approached females. However, prior to releasing virgin, fungus-contaminated males to spread B. basasiana among females of A. aegypti, this novel alternative needs further investigations.
BackgroundDengue is a viral disease transmitted by Aedes mosquitoes. It is a threat for public health worldwide and its primary vector Aedes aegypti is becoming resistant to chemical insecticides. These factors have encouraged studies to evaluate entomopathogenic fungi against the vector. Here we evaluated mortality, infection, insemination and fecundity rates in A. aegypti females after infection by autodissemination with two Mexican strains of Metarhizium anisopliae.MethodsTwo M. anisopliae strains were tested: The Ma-CBG-1 least virulent (lv), and the Ma-CBG-2 highly virulent (hv) strain. The lv was tested as non mosquito-passed (NMP), and mosquito-passed (MP), while the hv was examined only as MP version, therefore including the control four treatments were used. In the first bioassay virulence of fungal strains towards female mosquitoes was determined by indirect exposure for 48 hours to conidia-impregnated paper. In the second bioassay autodissemination of fungal conidia from fungus-contaminated males to females was evaluated. Daily mortality allowed computation of survival curves and calculation of the LT50 by the Kaplan-Meier model. All combinations of fungal sporulation and mating insemination across the four treatments were analyzed by χ2. The mean fecundity was analyzed by ANOVA and means contrasted with the Ryan test.ResultsIndirect exposure to conidia allowed a faster rate of mortality, but exposure to a fungal-contaminated male was also an effective method of infecting female mosquitoes. All females confined with the hv strain-contaminated male died in fifteen days with a LT50 of 7.57 (± 0.45) where the control was 24.82 (± 0.92). For the lv strain, it was possible to increase fungal virulence by passing the strain through mosquitoes. 85% of females exposed to hv-contaminated males became infected and of them just 10% were inseminated; control insemination was 46%. The hv strain reduced fecundity by up to 99%, and the lv strain caused a 40% reduction in fecundity.ConclusionsThe hv isolate infringed a high mortality, allowed a low rate of insemination, and reduced fecundity to nearly zero in females confined with a fungus-contaminated male. This pathogenic impact exerted through sexual transmission makes the hv strain of M. anisopliae worthy of further research.
Background Simulium (Boophthora) erythrocephalum (De Geer, 1776) is one of the blackfly species responsible for major public health problems in Europe. Blackfly outbreaks of this species are becoming more frequent, threatening public health in Spain. In the present study, bionomic parameters of S. erythrocephalum in northeastern Spain were estimated.Methods Simulium erythrocephalum was collected from May through June 2015 in Zaragoza, Spain, using the human-landing-collection (HLC) method. Daily pattern of total and parous landing activity was estimated, as was the gonotrophic cycle (GC) length and survivorship (S) rate, using time series analysis.ResultsHost-seeking females of S. erythrocephalum showed a bimodal human-landing activity pattern, with a minor and major peak at dawn and dusk, respectively; there was a significant negative association between human daily landing rate and temperature (P = 0.003) and solar radiation (P < 0.001). Overall, a daily landing rate (DLR) of 34 lands/person/day was estimated. Series of sequential data analysis on parity showed the highest significant (P < 0.001) correlation indices (r = 0.45 and r = 0.39 for raw and filtered data) for a 2-day time lag, indicating that the GC length corresponded to 2 days. Daily survivorship and parity rate were 0.85 and 0.72, respectively.Conclusions Simulium erythrocephalum was confirmed as a nuisance species in Zaragoza, using the HLC method for the first time in Spain. The data offer insights into the ecology of S. erythrocephalum, which can improve management strategies of this pest in Spain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.