Atopic dermatitis (AD) is a chronic inflammatory skin disease with increasing prevalence, though still little is known of the pathomechanisms and the causes of the disease. Patients with AD often have specific IgE reactivity to the yeast Malassezia furfur (M. furfur), present in the normal microflora on human skin. To investigate the possible interaction of immature and mature antigen-presenting dendritic cells with the yeast M. furfur and its allergenic components. Monocyte-derived dendritic cells (MDDCs) generated from human peripheral blood were allowed to interact with FITC-labelled whole M. furfur yeast cells, M. furfur extract, a recombinant allergen from M. furfur designated rMal f 5 and M. furfur mannan, in the absence of IgE antibodies. Interaction and uptake were detected using flow cytometry and confocal laser scanning microscopy. Internalization of M. furfur yeast cells and yeast components by immature MDDCs was found using confocal laser scanning microscopy. Results from flow cytometric studies showed that a median of 94% (range, 65-98%) of the immature CD1a+ MDDCs were M. furfur extract positive, 81% (75-97%) rMal f 5 positive and 93% (62-98%) mannan positive. Mature CD1a+ MDDCs were significantly less efficient in this respect, with the corresponding figures only 26% (6-37%, P < 0.01), 6% (2-15%, P < 0.05) and 32% (9-50%, P < 0.01), respectively. Uptake of the non-glycosylated rMal f 5 by immature CD1a+ MDDCs was decreased to 27% (15-38%) by inhibition of pinocytosis. The binding of M. furfur extract and mannan was inhibited in a dose-dependent manner by methyl-alpha-D-mannopyranoside, suggesting uptake via the mannose receptor. Human immature CD1a+ MDDCs can efficiently take up M. furfur and allergenic components from the yeast in the absence of IgE antibodies, implying that sensitization of AD patients to M. furfur can be mediated by immature dendritic cells in the skin.
Thioredoxin-1 (Trx1) is an endogenous dithiol reductant and antioxidant that was shown to be decreased in Alzheimer's disease (AD) neurons. A truncated form of Trx1, thioredoxin 80 (Trx80), was reported to be secreted from monocytes having cytokine activity. Here, we show that Trx80 is present in human brain in an aggregated form. Trx80 localizes mainly to neurons and is dramatically decreased in AD brains. Trx80 levels in cerebrospinal fluid (CSF) correlate with those of the classical AD biomarkers amyloid-β (Aβ) 1–42 and total tau. Moreover, Trx80 measurements in CSF discriminate between patients with stable mild cognitive impairment, prodomal AD and mild AD. We report that ADAM10 and 17, two α-secretases processing the Aβ precursor protein, are responsible for Trx80 generation. In contrast to the periphery, Trx80 has no pro-inflammatory effects in glia, either by itself or in combination with Aβ or apolipoprotein E. Instead, Trx80 inhibits Aβ(1–42) aggregation and protects against its toxicity. Thus, a reduction in Trx80 production would result in increased Aβ polymerization and enhanced neuronal vulnerability. Our data suggest that a deficit in Trx80 could participate in AD pathogenesis.
Summary. This study analysed a naturally occurring specific cellular immunity against tumour cells in chronic lymphocytic leukaemia (CLL) patients. Five out of eight patients had blood T lymphocytes able to recognize spontaneously and specifically the autologous tumour B cells (proliferation assay). In these five patients, detection of cytokines by realtime reverse transcription polymerase chain reaction (RT-PCR) revealed that granulocyte±macrophage colony-stimulating factor (GM-CSF) was the most abundant cytokine gene expressed by the T cells that recognized the autologous tumour B cells. Other activated cytokine genes were ginterferon (IFN), interleukin (IL)-2 and tumour necrosis factor (TNF)-a, but not IL-4. This profile suggests a type 1 anti-B-CLL T-cell response. CD80 and CD54 were relatively downregulated on the native tumour B cells compared with control normal B cells. Upregulation of CD80 on the leukaemic cells was mandatory for the induction of such a specific T-cell response. CD80 and CD54 monoclonal antibodies inhibited the specific T-cell DNA synthesis proliferation. The proliferative T-cell response was either MHC class I or class II restricted (inhibition by monoclonal antibodies). The specific cytokine gene expression could be found in isolated CD4, as well as CD8, T-cell subsets. This study demonstrated the presence of a potential natural specific CD4, as well as a CD8 type 1 T-cell immunity against the leukaemic CLL tumour B cells in CLL. A further detailed analysis of the spontaneous anti-CLL T-cell immunity is warranted that may facilitate the development of effective anti-tumour vaccines in CLL.
Recently we discovered that a naturally occurring C-terminally truncated thioredoxin (Trx80) is a potent mitogenic cytokine stimulating IL-12 production from CD40 + monocytes. To further characterise Trx80 we have engineered cysteine to serine mutants of Trx80 corresponding to the active site cysteines of Trx (Trx80SGPS) and to the structural cysteine at position 72 (Trx80C72S). Trx80SGPS and Trx80C72S retained the cell stimulatory activity of Trx80 and increased peripheral blood mononuclear cell (PBMC) proliferation threeto ¢ve-fold in vitro (P 6 0.01, n = 18). Both Trx80SGPS and Trx80C72S signi¢cantly stimulated IL-12 and IFN-Q Q secretion from PBMCs in the same manner as Trx80 (P 6 0.01, n = 9 and 10). The previously described Trx80 dimer is caused by noncovalent interactions, and not by any intermolecular disulphide bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.