Agave saponins are a valuable resource for the prospective development of new forms of agrochemicals. The extraction method was optimized and applied to 17 Agave species. Thirteen saponin fractions (SFs) were assayed on wheat etiolated coleoptiles, and analysed using UPLC-QTOF-MSE, NMR spectroscopy and the HMBC method for aglycone identification (HMAI). Six SFs were assayed on standard target species (STS) and weeds. The new extraction method reduces costs to obtain SFs with the same activity. The tested SFs assayed on etiolated wheat coleoptiles that belong to the subgenus Agave were among those with the highest activity levels. The combination of HMAI together with UPLC-MS allowed the identification of 20 aglycones in the SFs, and no isolation or hydrolysis of the saponins was required. A Principal Component Analysis (PCA) showed that for the active SFs the structural key would be the length of their sugar chain. The presence of a carbonyl group at C-12 implied an enhancement in phytotoxic activity. Six SFs were assayed on seeds, and no activity on Solanum lycopersicum (tomato) was observed; however, good activity profiles were obtained on weed E. crus-galli (IC50 < 80 ppm), better than the commercial herbicide Logran®. These findings represent a possible lead for the development of natural herbicides through the use of saponins of subgenus Agave species.
Polymer nanocomposites (PNCs) attract the attention of researchers and industry because of their potential properties in widespread fields. Specifically, electrically conductive and semiconductor PNCs are gaining interest as promising materials for biomedical, optoelectronic and sensing applications, among others. Here, metallic nanoparticles (NPs) are extensively used as nanoadditives to increase the electrical conductivity of mere acrylic resin. As the in situ formation of metallic NPs within the acrylic matrix is hindered by the solubility of the NP precursors, we propose a method to increase the density of Ag NPs by using different intermediate solvents, allowing preparation of Ag/acrylic resin nanocomposites with improved electrical behaviour. We fabricated 3D structures using stereolithography (SLA) by dissolving different quantities of metal precursor (AgClO4) in methanol and in N,N-dimethylformamide (DMF) and adding these solutions to the acrylic resin. The high density of Ag NPs obtained notably increases the electrical conductivity of the nanocomposites, reaching the semiconductor regime. We analysed the effect of the auxiliary solvents during the printing process and the implications on the mechanical properties and the degree of cure of the fabricated nanocomposites. The good quality of the materials prepared by this method turn these nanocomposites into promising candidates for electronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.