We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari (1973) regarding the limiting distributions of Kolmogorov-Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk-Jones statistic proposed by Jager and Wellner (2004). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived.
Using a stochastic approach, we establish a multidimensional version of the classical Hermite-Hadamard inequalities which holds for convex functions on general convex bodies. The result is closely related to the Dirichlet problem.
The problem of establishing inequalities of the Hermite-Hadamard type for convex functions on n-dimensional convex bodies translates into the problem of finding appropriate majorants of the involved random vector for the usual convex order. We present two results of partial generality which unify and extend the most part of the multidimensional Hermite-Hadamard inequalities existing in the literature, at the same time that lead to new specific results. The first one fairly applies to the most familiar kinds of polytopes. The second one applies to symmetric random vectors taking values in a closed ball for a given (but arbitrary) norm on R n . Related questions, such as estimates of approximation and extensions to signed measures, also are briefly discussed.
We characterize the (continuous) majorization of integrable functions introduced by Hardy, Littlewood, and Pólya in terms of the (discrete) majorization of finite-dimensional vectors, introduced by the same authors. The most interesting version of this result is the characterization of the (increasing) convex order for integrable random variables in terms of majorization of vectors of expected order statistics. Such a result includes, as particular cases, previous results by Barlow and Proschan and by Alzaid and Proschan, and, in a sense, completes the picture of known results on order statistics. Applications to other stochastic orders are also briefly considered.
We use some characterizations of convex and concave-type orders to define discrepancy measures useful in two testing problems involving stochastic dominance assumptions. The results are connected with the mean value of the order statistics and have a clear economic interpretation in terms of the expected cumulative resources of the poorest (or richest) in random samples. Our approach mainly consists in comparing the estimated means in ordered samples of the involved populations. The test statistics we derive are functions of L-statistics and are generated through estimators of the mean order statistics. We illustrate some properties of the procedures with simulation studies and an empirical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.