Monocytes-macrophages, the target cells of African swine fever virus (ASFV) are highly heterogeneous in phenotype and function. In this study, we have investigated the correlation between the phenotype of specific populations of porcine macrophages and their permissiveness to ASFV infection. Bone marrow cells and fresh blood monocytes were less susceptible to in vitro infection by ASFV than more mature cells, such as alveolar macrophages. FACS analyses of monocytes using a panel of mAbs specific for porcine monocyte/macrophages showed that infected cells had a more mature phenotype, expressing higher levels of several macrophage specific markers and SLA II antigens. Maturation of monocytes led to an increase in the percentage of infected cells, which correlated with an enhanced expression of CD163. Separation of CD163+ and CD163- monocytes demonstrated the specific sensitivity of the CD163+ subset to ASFV infection. In vivo experiments also showed a close correlation between CD163 expression and virus infection. Finally, mAb 2A10 and, in a lower extent, mAb 4E9 were able to inhibit, in a dose-dependent manner, both ASFV infection and viral particle binding to alveolar macrophages. Altogether, these results strongly suggest a role of CD163 in the process of infection of porcine monocytes/macrophages by ASFV.
African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8+ T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.
Summary
Swine monocytes constitute a heterogeneous population of cells which can be divided into four subsets based on the expression of SWC3, CD14, CD163 and swine leucocyte antigen (SLA) DR markers. These subsets appear to represent different maturation stages in a pathway along which these cells up‐regulate the expression of SLA DR and CD163 antigens and reduce that of CD14. Differences in the expression of adhesion and costimulatory molecules are also patent, with a progressive increase in the expression of CD11a, wCD11R1, CD29, CD49d, CD61, CD1a and CD80/86, and a concomitant decrease in that of wCD11R2. Besides, these subsets differ in their capacity for tumour necrosis factor‐α (TNF‐α) production in response to lipopolysaccharide + interferon‐γ. The CD163+ CD14− SLA DR+ subset produces higher amounts of TNF‐α than the CD163− CD14+ SLA DR− subset, whereas CD163+ CD14+ SLA DR+ and CD163− CD14+ SLA DR+ subsets show intermediate values. CD163+ monocytes also display a higher ability to present soluble antigens to T cells than CD163− monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.