One of the main reasons behind our current lack of understanding of iron cycling in the oceans is our inability to characterize the ligands that control iron solubility, photosensitivity, reactivity, and bioavailability. We currently lack consensus about the nature and origin of these ligands. Here, we present the first field application of a new methodological development that allows the selective quantification of the fraction of Fe complexed to humic substances (HS). In the HS-rich surface Arctic waters, including the Fe-rich Transpolar Drift (TPD), we found that HS iron binding groups were largely occupied by iron (49%). The overall contribution of Fe−HS complexes to DFe concentrations was substantial at 80% without significant differences between TPD and non-TPD waters. Stabilization and transport of large concentrations of DFe across the surface of the Arctic Ocean are due to the formation of high concentrations of Fe−HS complexes. Competition of Arctic Fe−HS complexes with desferrioxamine and EDTA indicated that their stability constants are considerably higher than the stability constants previously found for riverine HS in temperate estuaries and HS standard material. This is the first case of identification of the ligand-dominating iron speciation over a specific region of the global ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.