In 2002, L. Nicolaescu and the fourth author formulated a very general conjecture which relates the geometric genus of a Gorenstein surface singularity with rational homology sphere link with the Seiberg--Witten invariant (or one of its candidates) of the link. Recently, the last three authors found some counterexamples using superisolated singularities. The theory of superisolated hypersurface singularities with rational homology sphere link is equivalent with the theory of rational cuspidal projective plane curves. In the case when the corresponding curve has only one singular point one knows no counterexample. In fact, in this case the above Seiberg--Witten conjecture led us to a very interesting and deep set of `compatibility properties' of these curves (generalising the Seiberg--Witten invariant conjecture, but sitting deeply in algebraic geometry) which seems to generalise some other famous conjectures and properties as well (for example, the Noether--Nagata or the log Bogomolov--Miyaoka--Yau inequalities). Namely, we provide a set of `compatibility conditions' which conjecturally is satisfied by a local embedded topological type of a germ of plane curve singularity and an integer $d$ if and only if the germ can be realized as the unique singular point of a rational unicuspidal projective plane curve of degree $d$. The conjectured compatibility properties have a weaker version too, valid for any rational cuspidal curve with more than one singular point. The goal of the present article is to formulate these conjectured properties, and to verify them in all the situations when the logarithmic Kodaira dimension of the complement of the corresponding plane curves is strictly less than 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.