Summary
Despite the central role of Nuclear Pore Complexes (NPCs) as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm, their large size and dynamic nature have impeded a full structural and functional elucidation. Here, we have determined a subnanometer precision structure for the entire 552-protein yeast NPC by satisfying diverse data including stoichiometry, a cryo-electron tomography map, and chemical cross-links. The structure reveals the NPC’s functional elements in unprecedented detail. The NPC is built of sturdy diagonal columns to which are attached connector cables, imbuing both strength and flexibility, while tying together all other elements of the NPC, including membrane-interacting regions and RNA processing platforms. Inwardly-directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized in distinct functional units. Taken together, this integrative structure allows us to rationalize the architecture, transport mechanism, and evolutionary origins of the NPC.
Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical crosslinking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (ϳ600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. Molecular & Cellular Proteomics
Summary
The last steps in mRNA export and remodeling are performed by the Nup82
complex, a large conserved assembly at the cytoplasmic face of the nuclear pore
complex (NPC). By integrating diverse structural data, we have determined the
molecular architecture of the native Nup82 complex at subnanometer precision.
The complex consists of two compositionally identical multiprotein subunits that
adopt different configurations. The Nup82 complex fits into the NPC through the
outer ring Nup84 complex. Our map shows that this entire 14 MDa Nup82-Nup84
complex assembly positions the cytoplasmic mRNA export factor docking sites and
mRNP remodeling machinery right over the NPC's central channel, rather than on
distal cytoplasmic filaments as previously supposed. We suggest that this
configuration efficiently captures and remodels exporting mRNP particles
immediately upon reaching the cytoplasmic side of the NPC.
Integration of EM, protein–protein interaction, and phenotypic data reveals novel insights into the structure and function of the nuclear pore complex’s ∼600-kD heptameric Nup84 complex.
Highlights d A comprehensive model is presented of the yeast nuclear pore complex (NPC) d Connectors link together different structural and functional layers in the NPC d Multiple structural and functional NPC isoforms co-exist in each cell d Modular construction allows structural plasticity and inner ring dilation of the NPC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.