The development of Cannabis sativa strains with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) content is a growing field of research, both for medical and recreational use. However, the mechanisms behind clinical actions of cannabinoids are still under investigation, although there is growing evidence that mitochondria play an important role in many of them. Numerous studies have described that cannabinoids modulate mitochondrial activity both through activation of mitochondrial cannabinoid receptors and through direct action on other proteins such as mitochondrial complexes involved in cellular respiration. Thus, the aim of this study was to determine the actions of a panel of extracts, isolated from high-CBD varieties of Cannabis sativa, on the activity of the mitochondrial electron transport chain complex IV, cytochrome c oxidase (CCO), in order to select those with a safer profile. After demonstrating that Cannabis sativa strains could be identified by cannabinoids content, concentration–response curves were performed with a collection of extracts from strains with high-CBD and low-THC content using bovine CCO. The CCO rate was clearly modified by specific extracts of Cannabis sativa plants compared to others. Half maximal inhibitory concentrations (IC50) of extracts and the inhibitory effects evoked at 1 × 10−4 g/mL displayed a significant correlation with the THC. Therefore, the screening of extracts based on CCO activity provides a powerful and rapid methodology to identify those plants with higher mitochondrial toxicity or even mito-protective actions.
Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.