No abstract
Loading classical data into quantum computers represents an essential stage in many relevant quantum algorithms, especially in the field of quantum machine learning. Therefore, the inefficiency of this loading process means a major bottleneck for the application of these algorithms. Here, we introduce two approximate quantum-state preparation methods inspired by the Grover-Rudolph algorithm, which partially solve the problem of loading real functions. Indeed, by allowing for an infidelity and under certain smoothness conditions, we prove that the complexity of Grover-Rudolph algorithm can be reduced from O(2 n ) to O(2 k 0 ( ) ), with n the number of qubits and k 0 ( ) asymptotically independent of n. This leads to a dramatic reduction in the number of required two-qubit gates. Aroused by this result, we also propose a variational algorithm capable of loading functions beyond the aforementioned smoothness conditions. Our variational ansatz is explicitly tailored to the landscape of the function, leading to a quasi-optimized number of hyperparameters. This allows us to achieve high fidelity in the loaded state with high speed convergence for the studied examples.
The prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can efficiently find optimal solutions. We experimentally explore a novel approach to this problem by using a D-Wave quantum annealer, benchmarking its performance for attaining a financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed into a spin-1/2 Hamiltonian with at most, two-qubit interactions. The problem is thus equivalent to finding the ground state of an interacting spin Hamiltonian, which can be approximated with a quantum annealer. The size of the simulation is mainly constrained by the necessity of a large number of physical qubits representing a logical qubit with the correct connectivity. Our experiment paves the way for the codification of this quantitative macroeconomics problem in quantum annealers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.