The assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world’s most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved ‘bee safe’ butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.
The in vitro inhibitory potential of 50 extracts from various species of the flowering plant genus Hypericum was investigated using the Kirby-Bauer disk diffusion susceptibility test against Paenibacillus larvae, a spore-forming, Gram-positive bacterial pathogen that causes American foulbrood (AFB), a lethal disease affecting honeybee brood worldwide. Of the tested extracts, 14 were identified as highly active against P. larvae as compared to the activity of the positive control, indicating the presence of highly potent antibacterial compounds in the extracts. Examination of these extracts using TLC and HPLC/MS analyses revealed the presence of acylphloroglucinol and filicinic-acid derivatives. Six pure compounds isolated from these extracts, viz., hyperforin (1), uliginosin B (2), uliginosin A (3), 7-epiclusianone (4), albaspidin AA (5), and drummondin E (6), displayed strong antibacterial activity against the vegetative form of P. larvae (MIC ranging from 0.168-220 μM). Incubation of P. larvae spores with the lipophilic extract of Hypericum perforatum and its main acylphloroglucinol constituent 1 led to the observation of significantly fewer colony forming units as compared to the negative control, indicating that the acylphloroglucinol scaffold represents an interesting lead structure for the development of new AFB control agents.
Honeybee (Apis mellifera) imagines are resistant to the Gram-positive bacterium Paenibacillus larvae (P. larvae), causative agent of American foulbrood (AFB), whereas honeybee larvae show susceptibility against this pathogen only during the first 48 h of their life. It is known that midgut homogenate of adult honeybees as well as a homogenate of aged larvae exhibit strong anti-P. larvae activity. A bioactivity-guided LC-HRMS analysis of midgut homogenate resulted in the identification of 1-oleoyl-sn-glycero-3-phosphocholine (LPC) pointing to a yet unknown immune defence in adult honeybees against P. larvae. Antimicrobial activity of LPC was also demonstrated against Melissococcus plutonius, causative agent of European Foulbrood. To demonstrate an AFB-preventive effect of LPC in larvae, artificially reared larvae were supplemented with LPC to evaluate its toxicity and to assess whether, after infection with P. larvae spores, LPC supplementation prevents AFB infection. 10 μg LPC per larva applied for 3 d significantly lowered mortality due to AFB in comparison to controls. A potential delivery route of LPC to the larvae in a colony via nurse bees was assessed through a tracking experiment using fluorescent-labelled LPC. This yet undescribed and non-proteinous defense of honeybees against P. larvae may offer new perspectives for a treatment of AFB without the utilization of classic antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.