The gene mutated in ataxia telangiectasia, ATM, has been implicated in several cell functions such as cell cycle control and response to DNA damage and insulin. PKB/Akt has also been implicated in the cellular response to insulin, gamma-radiation, and cell cycle control. Interestingly, lack of PKB/Akt function in vivo is able to mimic some phenotypic abnormalities associated with ataxia telangiectasia (AT). Here we show that ATM is a major determinant of full PKB/Akt activation in response to insulin or gamma-radiation. This effect is mediated through the phosphatidylinositol 3-kinase domain of ATM that specifically affects Akt serine 473 phosphorylation. This conclusion was inferred from the results obtained in transient transfection assays using exogenous PKB/Akt and ATM in Cos cells. Moreover, the use of ATM inhibitors or small interfering RNA confirmed our observation. Further supporting these results, we also observed that biological responses tightly regulated by Akt, such as transcription factor of the forkhead family activity after insulin treatment or gamma-radiation response, were altered in cell lines derived from AT patients and knockout mice for ATM in which phosphorylation in serine 473 was almost abolished. This study proposes new clues in the search of the unknown PDK2 and new explanations for the radiosensitivity or insulin intolerance described more than 30 years ago in AT patients.
p38 MAPK has been implicated in the response to cancer therapy. To determine whether the activation of p38 MAPK could be specific to cancer therapy, we investigated the activation of p38 MAPK in response to several chemotherapeutic agents, such as cisplatin, doxorubicin and taxol in several human cell lines. Activation of p38 MAPK was measured after exposure to several chemotherapeutic agents, using specific phosphoantibodies. Only cisplatin was able to activate p38 MAPK in all the cell lines tested. Furthermore, other platinum compounds such as transplatin and platinum (IV) chloride can induce activation of p38 MAPK. The kinetics of this activation is a key event in the biological role of p38 MAPK in response to cisplatin, as we conclude from the differences observed after treatment with transplatin and cisplatin. The p38 MAPK activation is independent of the origin or genetic alterations of the cell lines and seems to be mediated through both upstream activators MKK6 and MKK3. Although the isoforms a/b are mainly activated, we also demonstrated that other members of the p38 MAPK family were susceptible to activation by cisplatin when they were overexpressed in 293 T. Finally, pretreatment with specific inhibitors (SB 203580 and SKF 86002) induces a resistant phenotype in response to cisplatin. Furthermore, low activation of this SAPK pathway correlates with a resistant phenotype as demonstrated in our experimental model of head and neck cancer. Therefore, we conclude that the p38 MAPK pathway is a specific target for cisplatin-based therapy with clinical implications.
Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo . Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.