In mammals, commitment and specification of germ cell lines involves complex programs that include sex differentiation, control of proliferation, and meiotic initiation. Regulation of these processes is genetically controlled by fine-tuned mechanisms of gene regulation in which microRNAs (miRNAs) are involved. We have characterized, by small-RNA-seq and bioinformatics analyses, the miRNA expression patterns of male and female mouse primordial germ cells (PGCs) and gonadal somatic cells at embryonic stages E11.5, E12.5, and E13.5. Differential expression analyses revealed differences in the regulation of key miRNA clusters such as ,, and , whose targets have defined roles during gonadal sexual determination in both germ and somatic cells. Extensive analyses of miRNA sequences revealed an increase in noncanonical isoforms on PGCs at E12.5 and dramatic changes of 3' isomiR expression and 3' nontemplate nucleotide additions in female PGCs at E13.5. Additionally, RT-qPCR analyses of genes encoding proteins involved in miRNA biogenesis and 3' nucleotide addition uncovered sexually and developmentally specific expression, characterized by the decay of, , and expression along gonadal development. These results demonstrate that miRNAs, their isomiRs, and miRNA machinery are differentially regulated and participate actively in gonadal sexual differentiation in both PGCs and gonadal somatic cells.
BackgroundRecently, an effective testis culture method using a gas-liquid interphase, capable of differentiate male germ cells from neonatal spermatogonia to spermatozoa has been developed. Nevertheless, this methodology needs deep analyses that allow future experimental approaches in basic, pathologic and/or reprotoxicologic studies. Because of this, we characterized at cellular and molecular levels the entire in vitro spermatogenic progression, in order to understand and evaluate the characteristics that define the spermatogenic process in ex vivo cultured testes compared to the in vivo development.MethodsTesticular explants of CD1 mice aged 6 and 10 days post-partum were respectively cultured during 55 and 89 days. Cytological and molecular approaches were performed, analyzing germ cell proportion at different time culture points, meiotic markers immunodetecting synaptonemal complex protein SYCP3 by immunocytochemistry and the relative expression of different marker genes along the differentiation process by Reverse Transcription - quantitative Polymerase Chain Reaction. In addition, microRNA and piwi-interactingRNA profiles were also evaluated by Next Generation Sequencing and bioinformatic approaches.ResultsThe method promoted and maintained the spermatogenic process during 89 days. At a cytological level we detected spermatogenic development delays of cultured explants compared to the natural in vivo process. The expression of different spermatogenic stages gene markers correlated with the proportion of different cell types detected in the cytological preparations.ConclusionsIn vitro progression analysis of the different spermatogenic cell types, from both 6.5 dpp and 10.5 dpp testes explants, has revealed a relative delay in relation to in vivo process. The expression of the genes studied as biomarkers correlates with the cytologically and functional detected progression and differential expression identified in vivo. After a first analysis of deep sequencing data it has been observed that as long as cultures progress, the proportion of microRNAs declined respect to piwi-interactingRNAs levels that increased, showing a similar propensity than which happens in in vivo spermatogenesis. Our study allows to improve and potentially to control the ex vivo spermatogenesis development, opening new perspectives in the reproductive biology fields including male fertility.Electronic supplementary materialThe online version of this article (10.1186/s12958-017-0305-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.