Painful lesions on the plantar aspect of the first interphalangeal joint (IPJ) of the hallux can be attributed to structures called ossicles, nodules, or sesamoids. The aims of the present study were first to verify that ultrasonography (US) is a high-sensitivity tool for diagnosing an interphalangeal ossicle (IO), and second to prove that US-guided-shaving surgery (“milling”) is a safe and feasible technique for remodeling the IO. The study is divided into three parts. In the first part, the prevalence of IOs was estimated in 12 cadaver feet using US, anatomical dissection, and fluoroscopy. In the second, a detailed US and morphological description of the IO was obtained. In the third, six cadaver feet were subjected to surgical milling. IO prevalence was 41.6% in gross anatomy, 41.6% in US examination and just 16.6% in fluoroscopy. The ossicles had a mean length of 4 mm (± 2 mm) and a width of 7 mm (± 2 mm). The ossicles could be completely shaved in all specimens without injuring important anatomical structures. Our results indicate that US is a more precise tool for diagnosing an IO than X-ray. Moreover, our US-guided mini-invasive surgical technique appears feasible and safe.
Introduction Morton's neuroma is an entrapment neuropathy of the third common plantar digital nerve, caused by the deep transverse metatarsal ligament (DTML). Minimally invasive or percutaneous surgery is a very common procedure, but surgical effectivity of this technique remains controversial. The goal of our study was to prove the effectiveness and safety of a new ultrasound‐guided technique for DTML‐release in a cadaver model. Materials, Methods, and Results The DTML was visualized in 10 fresh frozen donated body to science‐feet (eight male and two females, five left and five right) using an US device (GE Logic R7; 13 MHz linear probe, Madrid, Spain). Consecutively, minimally invasive ultrasound‐guided surgery was performed. Exclusion criteria of the donated bodies to science were previous history of forefoot surgery and space occupying mass lesions. The complete release of the ligament was achieved in all specimens without damage of any important anatomical structures as proven by anatomical dissection. Conclusions The results of this study indicate that our novel approach of an ultrasound‐guided release of the DTML is safer and more effective compared to blind techniques. The DTML could reliably be visualized and securely cut through a dorsal, minimally invasive surgical incision of only 2 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.