Transcranial direct current stimulation (tDCS) is a promising tool for cognitive enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements. We suggest that part of the mechanism of action of tDCS can be explained by non-invasive modulations of the E/I balance.
Transcranial direct-current stimulation (tDCS) is a noninvasive brain stimulation technique that has been successfully applied for modulation of cortical excitability. tDCS is capable of inducing changes in neuronal membrane potentials in a polarity-dependent manner. When tDCS is of sufficient length, synaptically driven aftereffects are induced. The mechanisms underlying these after-effects are largely unknown, and there is a compelling need for animal models to test the immediate effects and after-effects induced by tDCS in different cortical areas and evaluate the implications in complex cerebral processes. Here we show in behaving rabbits that tDCS applied over the somatosensory cortex modulates cortical processes consequent to localized stimulation of the whisker pad or of the corresponding area of the ventroposterior medial (VPM) thalamic nucleus. With longer stimulation periods, poststimulation effects were observed in the somatosensory cortex only after cathodal tDCS. Consistent with the polarity-specific effects, the acquisition of classical eyeblink conditioning was potentiated or depressed by the simultaneous application of anodal or cathodal tDCS, respectively, when stimulation of the whisker pad was used as conditioned stimulus, suggesting that tDCS modulates the sensory perception process necessary for associative learning. We also studied the putative mechanisms underlying immediate effects and after-effects of tDCS observed in the somatosensory cortex. Results when pairs of pulses applied to the thalamic VPM nucleus (mediating sensory input) during anodal and cathodal tDCS suggest that tDCS modifies thalamocortical synapses at presynaptic sites. Finally, we show that blocking the activation of adenosine A1 receptors prevents the long-term depression (LTD) evoked in the somatosensory cortex after cathodal tDCS.T he effects of weak direct-current (DC) stimulation on the excitability of the central nervous system were reported decades ago. Invasive stimulation in acute animals demonstrated that intracortical or epidural application of weak DC induces polarityspecific changes in the neuronal excitability of motor (1, 2), visual (1), and somatosensory (3) cortices. Interestingly, these changes persist for several minutes after the DC stimulus offset (3), sharing some molecular mechanisms with the classical long-term plasticity. In this regard, it has been demonstrated that anodal DC stimulation applied on the rat sensorimotor cortex modifies adenosine-elicited accumulation of cAMP (4), inducing an increase of protein kinase C and calcium levels (5, 6). tDCS has been successfully applied for modulation of cortical excitability in humans (7-11), and interest is growing in the use of this technique as a noninvasive tool for basic and clinical research in various neurologic pathologies, including chronic pain, stroke, and depression (12-15). Little is known about the molecular and/or cellular mechanisms underlying the neuromodulatory after-effects of tDCS, however. For this reason, new experimental models...
Although it is well-admitted that transcranial Direct Current Stimulation (tDCS) allows for interacting with brain endogenous rhythms, the exact mechanisms by which externally-applied fields modulate the activity of neurons remain elusive. In this study a novel computational model (a neural mass model including subpopulations of pyramidal cells and inhibitory interneurons mediating synaptic currents with either slow or fast kinetics) of the cerebral cortex was elaborated to investigate the local effects of tDCS on neuronal populations based on an in-vivo experimental study. Model parameters were adjusted to reproduce evoked potentials (EPs) recorded from the somatosensory cortex of the rabbit in response to air-puffs applied on the whiskers. EPs were simulated under control condition (no tDCS) as well as under anodal and cathodal tDCS fields. Results first revealed that a feed-forward inhibition mechanism must be included in the model for accurate simulation of actual EPs (peaks and latencies).Interestingly, results revealed that externally-applied fields are also likely to affect interneurons.Indeed, when interneurons get polarized then the characteristics of simulated EPs become closer to those of real EPs. In particular, under anodal tDCS condition, more realistic EPs could be obtained when pyramidal cells were depolarized and, simultaneously, slow (resp. fast) interneurons became de-(resp. hyper-) polarized. Geometrical characteristics of interneurons might provide some explanations for this effect.
BackgroundRegulation of synaptic connectivity, including long-term depression (LTD), allows proper tuning of cellular signalling processes within brain circuitry. In the cerebellum, a key centre for motor coordination, a positive feedback loop that includes mitogen-activated protein kinases (MAPKs) is required for proper temporal control of LTD at cerebellar Purkinje cell synapses. Here we report that the tyrosine-specific MAPK-phosphatase PTPRR plays a role in coordinating the activity of this regulatory loop.ResultsLTD in the cerebellum of Ptprr−/− mice is strongly impeded, in vitro and in vivo. Comparison of basal phospho-MAPK levels between wild-type and PTPRR deficient cerebellar slices revealed increased levels in mutants. This high basal phospho-MAPK level attenuated further increases in phospho-MAPK during chemical induction of LTD, essentially disrupting the positive feedback loop and preventing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation and endocytosis.ConclusionsOur findings indicate an important role for PTPRR in maintaining low basal MAPK activity in Purkinje cells. This creates an optimal ‘window’ to boost MAPK activity following signals that induce LTD, which can then propagate through feed-forward signals to cause AMPAR internalization and LTD.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber–PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.