Holographic complexity, in the guise of the Complexity = Volume prescription, comes equipped with a natural correspondence between its rate of growth and the average infall momentum of matter in the bulk. This Momentum/Complexity correspondence can be related to an integrated version of the momentum constraint of general relativity. In this paper we propose a generalization, using the full Codazzi equations as a starting point, which successfully accounts for purely gravitational contributions to infall momentum. The proposed formula is explicitly checked in an exact pp-wave solution of the vacuum Einstein equations.
AdS black holes with hyperbolic horizons provide strong-coupling descriptions of thermal CFT states on hyperboloids. The low-temperature limit of these systems is peculiar. In this note we show that, in addition to a large ground state degeneracy, these states also have an anomalously large holographic complexity, scaling logarithmically with the temperature. We speculate on whether this fact generalizes to other systems whose extreme infrared regime is formally controlled by Conformal Quantum Mechanics, such as various instances of near-extremal charged black holes.
We establish a version of the Momentum/Complexity (PC) duality between the rate of operator complexity growth and an appropriately defined radial component of bulk momentum for a test system falling into a black hole. In systems of finite entropy, our map remains valid for arbitrarily late times after scrambling. The asymptotic regime of linear complexity growth is associated to a frozen momentum in the interior of the black hole, measured with respect to a time foliation by extremal codimension-one surfaces which saturate without reaching the singularity. The detailed analysis in this paper uses the Volume-Complexity (VC) prescription and an infalling system consisting of a thin shell of dust, but the final PC duality formula should have a much wider degree of generality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.