Small interfering RNAs (siRNAs) are the mediators of mRNA degradation in the process of RNA interference (RNAi). Here, we describe a human biochemical system that recapitulates siRNA-mediated target RNA degradation. By using affinity-tagged siRNAs, we demonstrate that a single-stranded siRNA resides in the RNA-induced silencing complex (RISC) together with eIF2C1 and/or eIF2C2 (human GERp95) Argonaute proteins. RISC is rapidly formed in HeLa cell cytoplasmic extract supplemented with 21 nt siRNA duplexes, but also by adding single-stranded antisense RNAs, which range in size between 19 and 29 nucleotides. Single-stranded antisense siRNAs are also effectively silencing genes in HeLa cells, especially when 5'-phosphorylated, and expand the repertoire of RNA reagents suitable for gene targeting.
contributed equally to this work Duplexes of 21±23 nucleotide (nt) RNAs are the sequence-speci®c mediators of RNA interference (RNAi) and post-transcriptional gene silencing (PTGS). Synthetic, short interfering RNAs (siRNAs) were examined in Drosophila melanogaster embryo lysate for their requirements regarding length, structure, chemical composition and sequence in order to mediate ef®cient RNAi. Duplexes of 21 nt siRNAs with 2 nt 3¢ overhangs were the most ef®cient triggers of sequence-speci®c mRNA degradation. Substitution of one or both siRNA strands by 2¢-deoxy or 2¢-O-methyl oligonucleotides abolished RNAi, although multiple 2¢-deoxynucleotide substitutions at the 3¢ end of siRNAs were tolerated. The target recognition process is highly sequence speci®c, but not all positions of a siRNA contribute equally to target recognition; mismatches in the centre of the siRNA duplex prevent target RNA cleavage. The position of the cleavage site in the target RNA is de®ned by the 5¢ end of the guide siRNA rather than its 3¢ end. These results provide a rational basis for the design of siRNAs in future gene targeting experiments.
Summary The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. We performed a functional screen to identify specific miRNAs that function at synapses to control dendritic spine structure. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of Acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including G protein alpha subunits (Gα). RNAi-mediated knockdown of APT1 and expression of membrane-localized Gα both suppress spine enlargement caused by miR-138 inhibition, suggesting that APT1-regulated depalmitoylation of Gα might be an important downstream event of miR-138 function. Our results uncover a novel miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.
The RNA-Induced Silencing Complex (RISC) is a ribonucleoprotein particle composed of a single-stranded short interfering RNA (siRNA) and an endonucleolytically active Argonaute protein, capable of cleaving mRNAs complementary to the siRNA. The mechanism by which RISC cleaves a target RNA is well understood, however it remains enigmatic how RISC finds its target RNA. Here, we show, both in vitro and in vivo, that the accessibility of the target site correlates directly with the efficiency of cleavage, demonstrating that RISC is unable to unfold structured RNA. In the course of target recognition, RISC transiently contacts single-stranded RNA nonspecifically and promotes siRNA-target RNA annealing. Furthermore, the 5' part of the siRNA within RISC creates a thermodynamic threshold that determines the stable association of RISC and the target RNA. We therefore provide mechanistic insights by revealing features of RISC and target RNAs that are crucial to achieve efficiency and specificity in RNA interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.