We characterized the oxidative stress response of Candida glabrata to better understand the virulence of this fungal pathogen. C. glabrata could withstand higher concentrations of H 2 O 2 than Saccharomyces cerevisiae and even Candida albicans. Stationary-phase cells were extremely resistant to oxidative stress, and this resistance was dependent on the concerted roles of stress-related transcription factors Yap1p, Skn7p, and Msn4p. We showed that growing cells of C. glabrata were able to adapt to high levels of H 2 O 2 and that this adaptive response was dependent on Yap1p and Skn7p and partially on the general stress transcription factors Msn2p and Msn4p. C. glabrata has a single catalase gene, CTA1, which was absolutely required for resistance to H 2 O 2 in vitro. However, in a mouse model of systemic infection, a strain lacking CTA1 showed no effect on virulence.
Genetic deletion of the essential GTPase Gpn1 or replacement of the endogenous gene by partial loss of function mutants in yeast is associated with multiple cellular phenotypes, including in all cases a marked cytoplasmic retention of RNA polymerase II (RNAPII). Global inhibition of RNAPII-mediated transcription due to malfunction of Gpn1 precludes the identification and study of other cellular function(s) for this GTPase. In contrast to the single Gpn protein present in Archaea, eukaryotic Gpn1 possesses an extension of approximately 100 amino acids at the C-terminal end of the GTPase domain. To determine the importance of this C-terminal extension in Saccharomyces cerevisiae Gpn1, we generated yeast strains expressing either C-terminal truncated (gpn1ΔC) or full-length ScGpn1. We found that ScGpn1ΔC was retained in the cell nucleus, an event physiologically relevant as gpn1ΔC cells contained a higher nuclear fraction of the RNAPII CTD phosphatase Rtr1. gpn1ΔC cells displayed an increased size, a delay in mitosis exit, and an increased sensitivity to the microtubule polymerization inhibitor benomyl at the cell proliferation level and two cellular events that depend on microtubule function: RNAPII nuclear targeting and vacuole integrity. These phenotypes were not caused by inhibition of RNAPII, as in gpn1ΔC cells RNAPII nuclear targeting and transcriptional activity were unaffected. These data, combined with our description here of a genetic interaction between GPN1 and BIK1, a microtubule plus-end tracking protein with a mitotic function, strongly suggest that the ScGpn1 C-terminal tail plays a critical role in microtubule dynamics and mitotic progression in an RNAPII-independent manner.
Lager beer is made with the hybrid Saccharomyces pastorianus. Many publicly available S. pastorianus genome assemblies are highly fragmented due to the difficulties of assembling hybrid genomes, such as the presence of homeologous chromosomes from both parental types, and translocations between them. To improve the assembly of a previously sequenced lager yeast hybrid Saccharomyces sp. 790, and elucidate its genome structure, we proposed the use of alternative experimental evidence. We determined the phylogenetic position of Saccharomyces sp. 790 and established it as S. pastorianus 790. Then, we obtained from this yeast a bacterial artificial chromosome (BAC) genomic library with its BAC-end sequences (BESs). To analyze this data, we developed a pipeline (applicable to other assemblies) that classifies BESs pairs alignments according to their orientation. For the case of S. pastorianus 790, paired-end BESs alignments validated parts of the assembly and unpaired-end ones suggested contig joins or misassemblies. Importantly, the BACs library was preserved and used for verification experiments. Unpaired-end alignments were used to upgrade the previous assembly, and provided an improved detection of translocations. With this, we proposed a genome structure of S. pastorianus 790, which was similar to that of other lager yeasts; however, when we estimated chromosome copy number and experimentally measured its genome size, we discovered that one key difference is the outstanding S. pastorianus 790 ploidy level (allopentaploid). Altogether, our results show the value of combining bioinformatic analyses with experimental data such as long-insert clone information to improve a short-read assembly of a hybrid genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.