Alexandrium catenella, the main species associated with harmful algal blooms, has progressively increased its distribution through one of the most extensive and highly variable fjord systems in the world. In order to understand this successful expansion, we evaluated the effects of different salinities, light intensity, temperatures, nitrogen (N) forms and nitrogen/phosphate (N:P) ratio levels on the growth performance, using clones isolated from different locations across its wide geographic distribution. Results showed that the growth responses were plastic and, in some cases, different reaction norms among clones were observed. Despite plasticity, the optimal growth of A. catenella (i.e. highest growth rate and highest maximal cells density) was reached within a narrow thermal range (12–15°C), while salinity (20–30 PSU) and light intensity (20–120 μmol m−2 s−1) ranges were wider. These results are partially consistent with the highest cell densities recorded in the field. Furthermore, optimal growth was reached using reduced forms of nitrogen (i.e. urea and NH4+) and in unbalanced N:P ratios (18:1 and 30:1). These characteristics likely allow A. catenella to grow in highly variable environmental conditions and might partly explain the recent expansion of this species.
Heterosigma akashiwo is the only raphidophyte described for Chilean waters. A recent 2021 fish-killing bloom event of this raphidophyte ignited scientific research, but the ichthyotoxic mechanism and environmental conditions that promote its growth are still unclear. This is the first study confirming the occurrence of H. akashiwo in Chilean waters on the basis of the region D1/D2 of the 28S ribosomal gene. The pigment signature of the CREAN_HA03 strain revealed chlorophyll-a, fucoxanthin, and violaxanthin as the most abundant pigments, but profiles were variable depending on culture and field conditions. A factorial temperature–salinity growth experiment showed a maximal growth rate of 0.48 d−1 at 17 °C and 35 in salinity, but reached a maximal cell abundance of ~50,000 cells mL−1 at 12 °C and 25 in salinity. The fatty acid profile included high levels of saturated (16:0) and polyunsaturated (18:4 ω3; 20:5 ω3) fatty acids, but superoxide production in this strain was low (~0.3 pmol O2– cell−1 h−1). The RTgill-W1 bioassay showed that the H. akashiwo strain was cytotoxic only at high cell concentrations (>47,000 cells mL−1) and after cell rupture. In conclusion, salmon mortality during H. akashiwo bloom events in Patagonian fjords is likely explained by the high production of long-chain PUFAs at high cell densities, but only in the presence of high ROS production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.