The migration of CD4 + effector/memory T cells across the blood-brain barrier (BBB) is a critical step in MS or its animal model, EAE. T-cell diapedesis across the BBB can occur paracellular, via the complex BBB tight junctions or transcellular via a pore through the brain endothelial cell body. Making use of primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB, we here directly compared the transcriptome profile of pMBMECs favoring transcellular or paracellular T-cell diapedesis by RNA sequencing (RNA-seq). We identified the atypical chemokine receptor 1 (Ackr1) as one of the main candidate genes upregulated in pMBMECs favoring transcellular T-cell diapedesis. We confirmed upregulation of ACKR1 protein in pMBMECs promoting transcellular T-cell diapedesis and in venular endothelial cells in the CNS during EAE. Lack of endothelial ACKR1 reduced transcellular T-cell diapedesis across pMBMECs under physiological flow in vitro. Combining our previous observation that endothelial ACKR1 contributes to EAE pathogenesis by shuttling chemokines across the BBB, the present data support that ACKR1 mediated chemokine shuttling enhances transcellular T-cell diapedesis across the BBB during autoimmune neuroinflammation.Keywords: atypical chemokine receptor 1 r blood-brain barrier r transcellular diapedesis r T cell Additional supporting information may be found online in the Supporting Information section at the end of the article.
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions, and antigen (Ag) presentation at the BBB has been proposed to promote CD8+ T cell entry into the CNS. Here, we show that brain endothelial cells process and cross-present Ag, leading to effector CD8+ T cell differentiation. Under physiological flow in vitro, endothelial Ag presentation prevented CD8+ T cell crawling and diapedesis resulting in brain endothelial cell apoptosis and BBB breakdown. Brain endothelial Ag presentation in vivo was limited due to Ag uptake by CNS-resident macrophages but still reduced motility of Ag-specific CD8+ T cells within CNS microvessels. MHC class I-restricted Ag presentation at the BBB during neuroinflammation thus prohibits CD8+ T cell entry into the CNS and triggers CD8+ T cell-mediated focal BBB breakdown.
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions and antigen (Ag)-presentation at the BBB was proposed to promote CD8+ T-cell entry into the CNS. Employing live cell imaging and primary mouse brain microvascular endothelial cells (pMBMECs) as in vitro model of the BBB and a mouse model of CNS autoimmunity, we here show that pMBMECs process and present antigens leading to effector CD8+ T-cell differentiation. Under physiological flow, endothelial Ag-presentation prohibited CD8+ T-cell crawling and diapedesis leading to pMBMEC apoptosis. Reduced motility of Ag-specific CD8+ T cells was also observed in CNS microvessels in neuroinflammation in vivo. Luminal MHC class I Ag-presentation at the BBB thus prohibits CD8+ T-cell entry into the CNS and rather triggers CD8+ T cell mediated focal BBB breakdown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.