Passive liquid crystal (LC) devices are becoming an interesting alternative for the manufacturing of photonic devices in spatial applications. These devices feature a number of advantages in this environment, the lack of movable parts, and of exposed electronics being among the most outstanding ones. Nevertheless, the LC material itself must demonstrate its endurance under the harsh conditions of space missions, including launch and, perhaps, landing. In this paper, we present the environmental testing of an LC device for space applications. A number of LC based beam steering devices were manufactured, characterized, and tested in a series of destructive and nondestructive tests defined by the European Space Agency (ESA). The purpose was to evaluate the behavior and possible degradation of the LC response in simulated space environments. Device fabrication and testing was done within an ESA-funded project, whose purpose was the design, manufacturing, and characterization of adaptive optical elements, as well as the execution of qualification tests on the devices in space-simulated conditions.
Normal gut flora plays various beneficial roles for the human body, including the protection against inflammatory states and mucosal viral infections. It also influences the immune system of the body. The metabolites produced by the gut bacteria control local and other systemic organs' immune functions like the lungs and brain, playing a role in their response to acute and chronic illnesses. Probiotics have shown beneficial effects on lung health. On the contrary, dysbiosis is associated with several diseases, including asthma, chronic bronchitis, emphysema, allergies, and other acute viral infections. By altering the diet of patients with respiratory diseases like patients with chronic obstructive pulmonary diseases (COPD), we may be able to mitigate their conditions. This literature review aims to discuss the mechanisms altering the gastrointestinal flora, the pathophysiology of gut and lung axis, the role of diet in gut microbe health, and the association of COPD with gut dysbiosis and peptic ulcer disease (PUD). We have extracted the data from PubMed and Google Scholar, consisting of review articles, case-control studies, and animal studies. The studies showed an association between gut microbes and different lung diseases. It is found that gut dysbiosis not only disrupts intestinal immunity but may also facilitate the development of COPD. Present studies also show an increased seroprevalence of
Helicobacter pylori
in patients with COPD. The strategies that can improve lung functions, especially in COPD patients, include prebiotics and probiotic supplementation to a diet more balanced than the current average American diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.