Abstract-A number of current face recognition algorithms use face representations found by unsupervised statistical methods. Typically these methods find a set of basis images and represent faces as a linear combination of those images. Principal component analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships between pixels in the image database. In a task such as face recognition, in which important information may be contained in the high-order relationships among pixels, it seems reasonable to expect that better basis images may be found by methods sensitive to these high-order statistics. Independent component analysis (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information transfer through sigmoidal neurons. ICA was performed on face images in the FERET database under two different architectures, one which treated the images as random variables and the pixels as outcomes, and a second which treated the pixels as random variables and the images as outcomes. The first architecture found spatially local basis images for the faces. The second architecture produced a factorial face code. Both ICA representations were superior to representations based on PCA for recognizing faces across days and changes in expression. A classifier that combined the two ICA representations gave the best performance.Index Terms-Eigenfaces, face recognition, independent component analysis (ICA), principal component analysis (PCA), unsupervised learning.
Dissecting Dyslexia and Learning Difficulties in learning to read, despite reasonable effort and instruction, form the basis of dyslexia. Gabrieli (p. 280 ; see the cover) now reviews the latest research into the causes of dyslexia. Neuroimaging studies may give early notice of impending dyslexia, and it is hoped that early interventions may lessen the impact of dyslexia. Learning occurs in many settings. Humans uniquely use the formalized settings of schools and curriculum. Infants and children also do plenty of learning outside these settings, often intermingling social interactions. Meltzoff et al. (p. 284 ) survey the variety of learning contexts that people experience and discuss how recent advances in neuroscience and robotics are driving a new synthesis of learning.
Spontaneous facial expressions differ from posed expressions in both which muscles are moved, and in the dynamics of the movement. Advances in the field of automatic facial expression measurement will require development and assessment on spontaneous behavior. Here we present preliminary results on a task of facial action detection in spontaneous facial expressions. We employ a user independent fully automatic system for real time recognition of facial actions from the Facial Action Coding System (FACS). The system automatically detects frontal faces in the video stream and coded each frame with respect to 20 Action units. The approach applies machine learning methods such as support vector machines and AdaBoost, to texture-based image representations. The output margin for the learned classifiers predicts action unit intensity. Frame-by-frame intensity measurements will enable investigations into facial expression dynamics which were previously intractable by human coding.
Abstract-We present the Computer Expression Recognition Toolbox (CERT), a software tool for fully automatic real-time facial expression recognition, and officially release it for free academic use. CERT can automatically code the intensity of 19 different facial actions from the Facial Action Unit Coding System (FACS) and 6 different protoypical facial expressions. It also estimates the locations of 10 facial features as well as the 3-D orientation (yaw, pitch, roll) of the head. On a database of posed facial expressions, Extended Cohn-Kanade (CK+ [1]), CERT achieves an average recognition performance (probability of correctness on a two-alternative forced choice (2AFC) task between one positive and one negative example) of 90.1% when analyzing facial actions. On a spontaneous facial expression dataset, CERT achieves an accuracy of nearly 80%. In a standard dual core laptop, CERT can process 320 × 240 video images in real time at approximately 10 frames per second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.