The emergence of antibiotic-resistant Salmonella is of concern to food processors. The objective of this research was to identify antimicrobial activities of cinnamaldehyde and carvacrol against antibiotic-resistant Salmonella enterica in phosphate-buffered saline (PBS) and on celery and oysters. Twenty-three isolates were screened for resistance to seven antibiotics. Two resistant and two susceptible strains were chosen for the study. S. enterica cultures (10(5) CFU/ml) were added to different concentrations of cinnamaldehyde and carvacrol (0.1, 0.2, 0.3, and 0.4% [vol/vol]) in PBS, mixed, and incubated at 37 degrees C. Samples were taken at 0, 1, 5, and 24 h for enumeration. Celery and oysters were inoculated with S. enterica (10(6-7) CFU/ml), treated with 1% cinnamaldehyde or 1% carvacrol, incubated at 4 degrees C, and then sampled for enumeration on days 0 and 3. Both antimicrobials induced complete inactivation of S. enterica in PBS at 0.3 and 0.4% on exposure, and on 0.2% in 1 h. Exposure to cinnamaldehyde at 0.1% inactivated all pathogens at 1 h, and survivors were observed only for Salmonella Newport with 0.1% carvacrol at 1 h. In celery, 1% carvacrol reduced S. enterica populations to below detection on day 0, while 1% cinnamaldehyde reduced populations by 1 and 2.3 log on day 0 and day 3, respectively. In oysters, both antimicrobials caused about 5-log reductions on day 3. These results show the potential antimicrobial effects of carvacrol and cinnamaldehyde against antibiotic-resistant S. enterica in vitro and in foods.
Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.